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Abstract

Visual textures play an important role in image understanding because they
are a key component of the semantic of many images. Furthermore, texture rep-
resentations, which pool local image descriptors in an orderless manner, have had
a tremendous impact in a wide range of computer vision problems, from texture
recognition to object detection. In this thesis we make several contributions to the
area of texture understanding.

First, we add a new semantic dimension to texture recognition. Instead of focus-
ing on instance or material recognition, we propose a human-interpretable vocab-
ulary of texture attributes, inspired from studies in Cognitive Science, to describe
common texture patterns. We also develop a corresponding dataset, the Describable
Texture Dataset (DTD), for benchmarking. We show that these texture attributes
produce intuitive descriptions of textures. We also show that they can be used to
extract a very low dimensional representation of any texture that is very effective
in other texture analysis tasks, including improving the state-of-the art in material
recognition on the most challenging datasets available today.

Second, we look at the problem of recognizing texture attributes and materials in
realistic uncontrolled imaging conditions, including when textures appear in clutter.
We build on top of the recently proposed Open Surfaces dataset, introduced by the
graphics community, by deriving a corresponding benchmarks for material recogni-
tion. In addition to material labels, we also augment a subset of Open Surfaces with
semantic attributes.

Third, we propose a novel texture representation, combining the recent advances
in deep-learning with the power of Fisher Vector pooling. We provide thorough
evaluation of the new representation, and revisit in general classic texture represen-
tations, including bag-of-visual-words, VLAD and the Fisher Vectors, in the context
of deep learning. We show that these pooling mechanisms have excellent efficiency
and generalisation properties if the convolutional layers of a deep model are used as
local features. We obtain in this manner state-of-the-art performance in numerous
datasets, both in texture recognition and image understanding in general. We show
through our experiments that the proposed representation is an efficient way to ap-
ply deep features to image regions, and that it is an effective manner of transferring
deep features from one domain to another.
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Chapter 1

Introduction

1.1 Objective

This thesis addresses the problem of describing textures in images with one or more

semantic attributes. Texture patterns are a distinctive property of many natural

and man-made objects; for example the wings of a butterfly can be dotted, the skin

of a snake scaly, and a shirt can be striped or chequered. Textures, as the ones

shown in Figure 1.1, can be vividly described by humans using a variety of words

in the English language. In this thesis we study the problem of generating mean-

ingful and visually informative texture descriptions automatically by recognising a

combination of perceptual properties for each texture. By addressing this challenge

we add a novel dimension to texture recognition, aiming at describing generic tex-

ture patterns instead of focusing on texture identification or material recognition as

commonly done. Furthermore, our goal is to solve this problem in realistic settings,

that is, without making restrictive assumptions on the conditions in which images

are captured, for example, under controlled illumination, viewing angle or scale. To

this end, we consider images collected in the wild, randomly sampling them from the

Internet. However, we limited the conditions to the one that occur most frequently,

1
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 porous, dotted, freckled,

honeycombed

braided, interlaced,

knitted, woven, zigzagged

scaly, crosshatched, flecked,

studded, waffled

wrinkled, crystalline,

flecked, smeared

cracked,

pitted, studded

fibrous, freckled, 

interlaced, smeared, swirly

Figure 1.1: We address the problem of describing textures by associating to them
a collection of attributes. Our goal is to understand and generate automatically
human-centric descriptions such as the examples above.

and avoided images in conditions unlikely to occur, or the ones that would make

the recognition task challenging for humans: extreme light conditions such as insuf-

ficient light or high specularities, highly reflective surfaces, perspective of extreme,

unrealistic distortions. For some of our experiments, we require that textures cover

almost the entire image (≥ 90% of area). For the most recent experiments, how-

ever, we allow textures to appear in clutter, by removing the common simplifying

assumption in texture recognition that a single texture or pattern covers an entire

image. We allow textures to cover regions of image of arbitrary shape, as long as

these segments are connected, and sufficiently large such that they capture enough

information in order to be recognizable. By removing this constraint, that is, al-

lowing textures to appear as segments of arbitrary shape and size, we bring texture

recognition closer to real-life applications.

Some examples of the texture attributes and materials addressed in this thesis,
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banded blotchy chequered grid

marbled paisley paisley wrinkled

brick ceramic carpet fabric

Figure 1.2: Texture recognition in the wild and in clutter. Examples of top
retrieved texture segments by attributes (top two rows) and materials (bottom) in
the Open Surfaces dataset as recognised by one of our systems.

collected in the wild and in clutter, are shown in Figure 1.2. The figure shows also

the predicted labels for these images, as recognized by one of the systems developed

in this work.

The first step in achieving our aim is to select a rich vocabulary of words or

attributes that can be used to describe a wide range of textures; this vocabulary

should be compact, yet sufficiently large and the terms should be visually mean-

ingful. The second step is to collect a large database of images to exemplify the

words in the proposed vocabulary, in order to learn to describe textures, as well as

to evaluate and compare algorithms. The third step is to develop a system capable

to recognize a term or a list of terms, from a pre-defined vocabulary, which could

be used as a description for the contents of a texture image. In order to do so, we

propose novel texture representations that, compared to existing ones, are better
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able of handling the huge visual variability of texture attributes.

1.2 Motivation and Applications

The primary motivation of developing texture attributes is to enrich the space of

visual attributes that can be understood by computer vision systems. Recently,

several contributions have demonstrated the power of attributes in search, by un-

derstanding complex queries, in learning, by porting textual information back to the

visual domain, an in image description, by producing rich accounts of the content of

images. Textural properties have an important role in these descriptions, particu-

larly for objects that are best qualified by a pattern, such as textile, or the wings of

birds or butterflies. Nevertheless, the attributes of textures have been investigated

only tangentially. Our work aims at filling this gap by proposing a rich set of texture

attributes inspired by the psychological literature [Bhushan et al., 1997].

A second motivation for our work is technical: work on recognizing textures

motivated the development of orderless image representations. While these repre-

sentations come natural for textures, they were shown to be applicable on a wide

variety of tasks in computer vision, such as object or scene understanding. However,

with the recent progress in deep learning, these classical methods have been replaced

by the modern generation of deep convolutional neural networks. Therefore, we are

interested in understanding how we could reuse methods from the classical texture

representations in the context of deep learning, or at least how to draw inspiration

from these methods.

Textures are often associated in computer vision to the problem of recognizing

an instance of a surface or categories of materials. Perceptual properties such as

attributes are orthogonal to these as: (i) they are subjective rather than objective;

(ii) they are not exclusive but can be combined to describe each texture occurrence;

and (iii) they are not intrinsically invariant to viewpoint and illumination, but only
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invariant to the extent that human perception is (for example the same material

may appear “cracked” or “smooth” depending on the illumination). This poses

interesting challenges in modelling and recognizing such texture properties.

We are also motivated by the practical aspects of building computer vision sys-

tems capable of recognizing texture attributes. These have in fact the potential of

enabling new human-centric applications, or of improving existing ones, by allow-

ing computers to understand more nuanced and detailed properties of objects. For

example, in this thesis we demonstrate applications of texture attributes to the au-

tomatic description of items in online catalogues of fabrics, as well as to the retrieval

of such items based on their descriptions.

1.3 Challenges

A first challenge in developing a system capable of describing textures in terms of

their visual properties is to identify a vocabulary of describable texture attributes

capable of generating informative descriptions of a broad variety of textures. The

list of selected terms needs to be informative, visually meaningful and broad, yet

compact. The main questions that we ask are then: which are the words most

frequently used in describing the visual appearance of textures? Can we identify a

minimal set of such words that can satisfactorily describe a wide variety of textures?

Having chosen the texture attributes vocabulary, the second challenge is to collect

in a cost-effective manner a reasonably large set of example images representative

for each of the texture attributes. This data should be sufficiently large to learn and

evaluate reliable models of the attributes that can generate coherent descriptions

of the textures involving combinations of different attributes. Questions related to

this goal include: how can we mitigate the costs of collecting annotations for a

large number of images as well as attributes? Can we reduce the cost of collecting

annotations by avoiding to gather uninformative ones? How can we obtain reliable
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labels for the example images given that the attributes are subjective?

These questions enumerated so far are answered in Chapter 3, where we induce a

texture attribute vocabulary from psychological studies, and where we explain how

a novel dataset of describable texture attributes was collected and annotated.

A second challenge is to develop methods to recognise texture attributes auto-

matically in images. The difficulty of this task can be appreciated by considering

the huge visual variability that characterise visual attributes, as the same attribute

can apply to many different “styles” of textures. This should be contrasted to

standard problems in texture analysis such as instance identification and material

recognition where variability is more limited. Recognizing texture instances, par-

ticularly in controlled conditions, is not a very challenging task, as seen from the

near-perfect accuracies reported in the literature (and corroborated by the exper-

iments in Section 5.2.1). Moving from instances to material categories adds more

complexity as it introduces intra-class variations. A representative example is the

KTH-TIPS2-b dataset, which contains just four different instances for each of a

number of material categories. This variability can be appreciated in Figure 1.3,

where four wool samples have very different appearance despite being photographed

under the same viewpoint and illumination. The KTH-TIPS2-b benchmark is still

not entirely saturated by current recognition methods.

Texture attributes, however, are likely to have an even greater visual variability

than materials. In order to develop a generally applicable texture lexicon, one needs

in fact to recognise a huge diversity of pattern types, from regular (e.g. chequered,

polka-dotted, honeycombed) to stochastic (flecked, sprinkled,blotchy, smeared), and

from micro-textures (porous, woven, pitted) to larger shape variations (bumpy,

pleated). Furthermore, while materials may be correlated with certain texture at-

tributes, recognizing attributes is not the same as recognizing materials. For exam-

ple, a texture like polka-dotted can be painted on top of a wide diversity of support
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Figure 1.3: Intra class variation, under controlled conditions. These images from
KTH-TIPS2-b dataset depict four samples of wool captured at the same scale, view-
ing angle and illumination conditions.

materials such as fabric, plastic, or leather, as shown in Figure 1.4.

Recognizing texture attributes or materials of textures in the wild increases the

recognition complexity significantly. Effects such as transparency or translucency

of materials such as glass, plastic, wax, or the reflectivity and specularity of mate-

rials such as metal and plastic, cause the appearance of materials to depend on the

environment surrounding them. Furthermore, materials need to be recognised inde-

pendently of the objects that they form since the same type of objects can be made

of different materials (e.g. a toy car can be made of metal, plastic or wood [Adel-

son, 2001; Liu et al., 2010]) and different objects can be made of the same material

(e.g. a toy car and bottle can both be made of plastic, yet they look very different).

The appearance of materials depends significantly on the objects that they form,

and it is sometimes very challenging to factor materials from objects in images. For

attributes, furthermore, the polka dots of Figure 1.4 reveal some of the complexity

of visual attributes when imaged in the wild, on real objects: the size of the dots

varies, even within the same texture instance; the layout of the texture (the spatial

arrangement of the dots) and style (their colour) can change; occlusions, caused by

the shape of the textured object or by other ones, mean that the texture region has

a highly variable shape. By design, the images collected for our benchmarks are

captured in natural light conditions (indoor or outdoor), as well as standard artifi-

cial light – but the light source parameters are not known upfront, and in general,
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Figure 1.4: Intra-class variation for textures collected in the wild. The same texture
can appear on various surfaces – leather, wall, fabric, rubber; the colour and size of
the texture elements may differ, even within the same texture. Parts of the texture
may not be visible, due to self-occlusions or occlusions by other objects.

multiple images of the same texture or material are not available, under varying

light conditions.

When textures are also observed in clutter, there is one more layer of complexity

as images must be segmented into textured regions before these can be assigned

a label. Potential difficulties in segmentation may be caused by the scale of the

texture, which can lead to over-segmentation due to the failure of algorithms to

group texture elements (e.g. the squares in a chequered pattern); in turn, this may

lead to an incorrect labelling of the pixels in the segments.

1.4 Thesis Outline

In this thesis we are introducing a novel dimension to texture analysis, by recognizing

a large set of perceptual attributes of textures and generating texture descriptions,

instead of recognizing textures by material or instances. Furthermore, we are ad-
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dressing the problem of recognition in the wild and in clutter, removing constraints

which may otherwise limit the use of texture attribute and material recognition in

practical applications.

We are reviewing the related literature in Chapter 2, covering the prior work

on perceptual properties of textures. In Section 2.2, we provide a detailed overview

of specific benchmarks, addressing both instance recognition as well as category

recognition, for textures and materials. We will cover early benchmarks, such as

Brodatz dataset, up to recent and more challenging ones, such as Flickr Material

Dataset (FMD). In terms of texture representations, in Section 2.3 we present

classical texture representations, with an emphasis on local descriptors.

In Chapter 3 we introduce a rich vocabulary of 47 describable texture attributes

inspired by the psychological literature [Bhushan et al., 1997] that capture a wide

variety of visual properties of textures. We also introduce a corresponding Describ-

able Texture Dataset consisting of 5,640 texture images jointly annotated with the

47 attributes (Section 3.1). In an effort to support directly real world applications,

and inspired by datasets such as ImageNet [Deng et al., 2009] and the Flickr Mate-

rial Dataset (FMD) [Sharan et al., 2009], our images are captured “in the wild” by

downloading them from the Internet rather than collecting them in a laboratory.

We also address the practical issue of crowd-sourcing this large set of joint an-

notations efficiently accounting for the co-occurrence statistics of attributes and for

the appearance of the textures. In Section 3.1.1 we are describing the annotation

process in detail, covering the tools developed for this purpose and design decisions.

Although images in DTD and FMD are collected “in the wild”, the textures

always fill the view of the camera. To remove this last-standing limitation, we

build on the Open Surfaces (OS) dataset that was recently introduced by Bell et

al., 2013 in the computer graphics community, which we describe in more detail in

Section 3.2. OS comprises of a large number of images, with a number of high-
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quality texture/material segments. Many of these segments are annotated with

additional properties such as the material name, the viewpoint, the BRDF, and the

object class. Here we propose to use the material annotations in order to create

a benchmark to evaluate material recognition in clutter. We also augment the OS

dataset with some of the 47 attributes from DTD in order to evaluate in clutter the

recognition of texture attributes as well.

In Chapter 4, we cover in more detail image representations, addressing local

descriptors (Section 4.1), handcrafted, such as filterbanks or Local Binary Patterns,

and proposing learned ones, like the outputs of convolutional layers of a Convo-

lutional Neural Network (CNN). We are also comparing pooling encoders in Sec-

tion 4.2, both orderless, like Bag of Visual Words, VLAD, Fisher Vector, as well

as order-sensitive, like CNN-based pooling, using the fully connected layers of the

CNN, or Spatial Pyramid Pooling.

In this context, we are introducing FV-CNN, a texture representation based

on Fisher Vector (FV) encoding, and inspired by the recent advances in Convolu-

tional Neural Networks (CNNs). CNNs have emerged recently as the new state-

of-the-art for recognition, as demonstrated by remarkable results in image classi-

fication [Krizhevsky et al., 2012], detection [Girshick et al., 2014] and segmenta-

tion [Hariharan et al., 2014] on a number of widely used benchmarks. Key to their

success is the ability to leverage large labelled datasets to learn increasingly complex

transformations of the input to capture invariances. Importantly, CNNs pre-trained

on such large datasets have been shown [Oquab et al., 2014; Chatfield et al., 2014;

Girshick et al., 2014] to contain general-purpose feature extractors, transferable to

many other domains.

The idea of FV-CNN is to interpret the convolutional layers of a CNN as a

filter bank that extracts local image descriptors densely, and build out of these a

representation using FV as an orderless pooling mechanism, similarly to bag-of-
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words approaches. Although the suggested approach is simple, it is remarkably

flexible and effective. First, pooling is orderless and multi-scale, hence suitable for

textures. Second, any image size can be processed by convolutional layers, avoiding

costly resizing operations. Third, convolutional filters, pooled by FV-CNN, are

shown to transfer more easily than fully-connected ones even without fine-tuning.

While other authors have recently proposed alternative pooling strategies for CNNs

[He et al., 2014; Gong et al., 2014], we show that our method is more natural, faster

and often significantly more accurate.

In Chapter 5 we provide a thorough evaluation of the proposed descriptors, on

a variety of benchmarks, from attributes to object categories and from textures

to scenes. For texture analysis, we evaluate material and describable attributes

recognition and segmentation in the wild and in clutter using our new DTD and

Open Surfaces datasets (Section 3.2), as well as in a large number of standard

benchmarks. When used with linear SVMs, FV-CNN improves the state of the art

on texture recognition by a significant margin. We also show that the proposed

descriptor can be used for other recognition tasks, like scenes, objects and even fine-

grained classification. What is remarkable is that on MIT Indoor Scenes dataset,

FV-CNN does not only significantly outperform the current state of the art of Zhou

et al., 2014, but also removes entirely the domain-specific advantage of the CNNs

trained on scene data, showing that FV-CNN is better at domain transfer.

In Chapter 6, we extend the evaluation to the problem of texture segmentation

and recognition. We evaluate the proposed descriptors on image regions obtained

from off-the-shelf segmentation algorithms, to show that using better region classi-

fiers could contribute to further refining image segmentation.

In Chapter 7 we explore potential applications of the proposed describable at-

tributes. We introduce a semantic, low-dimensionality mid-level descriptor, ob-

tained as scores of the 47 linear classifiers learned on DTD. These can serve a
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complementary role for recognition and description in domains where the material

is not-important or is known ahead of time, such as fabrics or wallpapers. However,

can these attributes improve other texture analysis tasks such as material recog-

nition? We answer this question in the affirmative in a series of experiments on

the challenging FMD and KTH-TIPS2-b datasets. We show that these describable

descriptors, when used as features, can give significant boosts in accuracy. Further-

more, these attributes are “human readable” and can serve as intuitive dimensions to

explore large collections of texture patterns – for example product catalogues (wall-

papers or bedding sets) or material datasets. We present several such visualizations

in this chapter and in the Appendix.

We conclude this thesis, with a summary and suggestions for future work in

Chapter 8.

1.5 Publications

This section gives a list of the publications that contain the content of this thesis.

Published work

• CVPR 2014 [Cimpoi et al., 2014] – This paper introduces the problem

of recognizing describable texture properties, and DTD, a dataset suitable for

the problem, with a detailed description of the collection framework (presented

in Chapter 3). In the paper we also proposed a state-of-the-art descriptor for

texture and material classification, based on Fisher Vector pooling of dense

SIFT features, and deep convolutional features.

• CVPR 2015 [Cimpoi et al., 2015] – This paper proposes a novel texture

descriptor, by pooling the activations of convolutional layers of deep convolu-

tional neural networks, using Fisher Vector encoding (Chapter 4), and shows

its application to recognizing textures (and materials) in the wild and clut-
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ter. We evaluated the proposed descriptor on standard benchmarks, as well

as Open Surfaces dataset, which we extended with semantic attributes.

Work under review

• IJCV 2015 – This paper provides an in depth analysis of parameters and

variants of the new descriptor introduced in Cimpoi et al., 2015, as well as a

thorough evaluation for several benchmarks: texture, material, object, scene

recognition, as well as fine-grained categorization.



Chapter 2

Literature Review

This chapter reviews the literature most closely related to our work on texture analy-

sis. We will cover the prior work on perceptual properties of textures in Section 2.1.

Then, in Section 2.2 we will introduce the most notable benchmarks for texture

instance recognition as well as category recognition. The new benchmarks we are

proposing, Describable Texture Dataset and OpenSurfaces dataset, with the at-

tribute extension are presented in Chapter 3. Textures, due to their ubiquitousness

and complementarity to other visual properties such as shape, have been studied

in several contexts: texture perception [Adelson, 2001; Amadasun and King, 1989;

G̊arding, 1992; Forsyth, 2001], description [Ferrari and Zisserman, 2007], material

recognition [Leung and Malik, 2001; Ojala et al., 2002; Varma and Zisserman, 2003;

Varma and Zisserman, 2005; Sharan et al., 2013; Schwartz and Nishino, 2013], seg-

mentation [Manjunath and Chellappa, 1991; Jain and Farrokhnia, 1991; Chaudhuri

and Sarkar, 1995; Dunn et al., 1994], synthesis [Efros and Leung, 1999; Wei and

Levoy, 2000; Portilla and Simoncelli, 2000], and shape from texture [G̊arding, 1992;

Forsyth, 2001; Malik and Rosenholtz, 1997]. This thesis is mostly concerned with

the problem on texture recognition, discussed in Section 2.1 for perceptual proper-

ties, and in Section 2.2 for the recognition of identities and materials. The latter

14
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section reviews in some detail existing texture benchmark datasets, both because

they are related to our own development of a novel benchmark and because they

will be used in the evaluation of texture representations.

The chapter concludes with Section 2.3 presenting an overview of texture repre-

sentation and recognition methods. In this section we focus on the methods achiev-

ing the state-of-the-art, and leave the details about local descriptors for Chapter 4,

Section 4.1.1, as well as pooling encoders, presented in Section 4.2, as they are

closely related to the proposed method.

2.1 Perceptual Properties of Textures

In the analysis of visual textures, the focus was predominantly on the recognition

of instances and materials [Adelson, 2001], but perceptual properties such as de-

scribable texture attributes [Ferrari and Zisserman, 2007; Matthews et al., 2013]

have received increasing attention. Describable attributes include properties such

as “lined” or “crosshatched” that are not necessarily mapped to higher-level seman-

tic categories such as objects, parts, or materials. While the literature on describable

texture attributes is much smaller than the one on material recognition, the interest

in such attributes is both scientific – i.e. as a way of developing a deeper under-

standing of textural patterns – and applicative – e.g. for e-commerce, assisted design,

computer graphics, and human interfaces.

One of the key contributions of this thesis is to address the question of whether

there exists a “universal” set of attributes that can describe a wide range of texture

patterns, whether these can be reliably estimated from images, and for what tasks

they are useful. This work is motivated mainly by the work of Bhushan, Rao and

Lohse [Rao and Lohse, 1996; Bhushan et al., 1997]. Their experiments suggest that

there is a strong correlation between the structure of the lexical space and percep-

tual properties of texture. While they studied the psychological aspects of texture
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perception, the focus of this thesis is the challenge of estimating such properties from

images automatically. In particular, in Bhushan et al., 1997, the authors identified

a set of words sufficient to describing a wide variety of texture patterns; the same

set of words was used to bootstrap DTD.

While recent work in computer vision has been focused on texture identification

and material recognition, notable contributions to the recognition of perceptual

properties exist. Texture attributes have an important role in describing objects,

particularly for those that are best characterised by a pattern, such as items of

clothing and parts of animals such as birds. Remarkably, the first work on modern

visual attributes by Ferrari and Zisserman, 2007 focused on the recognition of a few

perceptual properties, that describe textures. In this paper, the authors propose

a generative model for visual attributes, which may be unary – like colours, basic

textures (sand, grainy), shape – or binary, when the basic element is composed of

two segments, such as the black and white stripes in the case of a zebra. While

in texture and material recognition benchmarks, the classes are disjoint, multiple

attributes could be used to describe a single image. The idea of multi-label learning

originated from text classification [McCallum, 1999], and it was adopted for vision

applications as well [zhou2007multi].

However, the problem of recognizing attributes was formulated in the context of

objects. In [Farhadi et al., 2009], the authors propose shifting the goal of recogni-

tion, from naming to describing, which comes with several advantages, including:

recognizing unusual properties of familiar objects, describe unknown objects, and

enables learning how to recognize new objects, with very few visual examples, or

even none. A list of 64 attributes was proposed, and images from Pascal VOC2008

were labelled with these attributes, using Amazon Mechanical Turk. Besides using

semantic attributes, which may describe presence or absence of parts (e.g. has wheel,

no beak), shape or material (furry), a set of discriminative attributes are used, to
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help better separate between classes that share the same set of semantic attributes

(e.g. cats and dogs are both four-legged and furry). In [Farhadi et al., 2010], also

in the context of objects, it is shown that using attributes contributes to localizing

and describing familiar and unfamiliar objects better, compared to a baseline that

relies only on basic category detectors. Attributes were also used for ”zero-shot”

transfer learning, [Lampert et al., 2009], to overcome the lack of training examples

for certain novel categories. Attributes could be reliably used to predict new classes,

based on their attribute representation, without the need for retraining.

Later work, such as Berg et al., 2010 mined visual attributes from textual de-

scriptions of images on the Internet, in an attempt to discover relevant attributes,

for a large number of categories, without the need of manual labelling. The discov-

ered attributes include mostly colour, shape and style properties, but also texture

attributes, such as ”striped” or ”plaid”.

The work of Parikh and Grauman, 2011 proposes the use of relative attributes,

as opposed to previous work, which considered attributes binary, indicating pres-

ence or absence of certain properties. Relative attributes seem more natural and less

restrictive and enable more meaningful descriptions, by expressing the strength of a

property with respect to a reference example. From the technical perspective, learn-

ing relative attributes implies learning a ranking [Joachims, 2002] of images, based

on the strength of the properties, and the authors show experimentally that learning

relative attributes gives better results compared to learning binary attributes.

Relative attributes were used in a feedback mechanism, for guiding and refining

retrieval of shoes and clothing items [Kovashka et al., 2012]. A set of ranking

functions are learnt offline, and at query time, the relevance function re-ranks the

pool of images given the constraints provided by the user. This approach allows

the users to iteratively refine the results, starting from a generic query. While

the predictions improve with the amount of feedback provided, relative attributes
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feedback shows more significant gains per unit of feedback.

Nevertheless, so far the attributes of textures have been investigated only tan-

gentially, as most of the work on visual attributes has relegated describable texture

properties to a marginal role [Farhadi et al., 2009; Farhadi et al., 2010; Parikh and

Grauman, 2011], focusing on attributes of objects.

Datasets that focus on the recognition of subjective properties of textures are

less common. One example is Pertex [Clarke et al., 2011], containing 300 texture

images taken in a controlled setting (Lambertian renders of 3D reconstructions of

real materials) as well as a semantic similarity matrix obtained from human simi-

larity judgements. The work most related to ours is probably the one of Matthews

et al., 2013 that analysed images in the Outex dataset [Ojala et al., 2002] using

a subset of the texture attributes that we consider. Our dataset differs in scope

(containing more attributes) and, especially, in the nature of the data (controlled vs

uncontrolled conditions). In particular, working in uncontrolled conditions allows

us to show the transferability of the texture attributes to real-world applications,

including material recognition in the wild and in clutter.

2.2 Texture Instances and Material Categories

Texture recognition has been explored in a variety of scenarios. A first axis of

variability is whether the focus is on recognising specific texture or material samples

(instance recognition) or whether the goal is to classify textures based on material

(category recognition). A second important axis of variability is whether textures

are imaged in controlled conditions, as in benchmarks such as CuRET [Dana et al.,

1999] or KTH-TIPS [Caputo et al., 2005], or, more recently, whether textures are

collected “in the wild”, as evaluated for example by FMD [Sharan et al., 2009].
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which material instance?

Brodatz CUReT

sample 1

which material category?

KTH-TIPS Flickr MD

bread foliagesample 35

Figure 2.1: Datasets such as Brodatz Brodatz, 1966 and CUReT Dana et al.,
1999 (left) addressed the problem of material instance identification and others such
as. KTH-T2b Hayman et al., 2004 and FMD Sharan et al., 2009 (right) the one of
material category recognition. Our DTD dataset addresses a very different problem:
the one of describing a pattern using intuitive attributes (Figure 1.1).

2.2.1 Texture and Material Instances

Datasets like CUReT [Dana et al., 1999], UIUC [Lazebnik et al., 2005], KTH-

TIPS [Caputo et al., 2005; Hayman et al., 2004], Outex [Ojala et al., 2002], Drexel

Texture Database [Oxholm et al., 2012], and ALOT [Burghouts and Geusebroek,

2009] address the recognition of specific instances of one or more materials. UMD [Xu

et al., 2009] is similar, in the sense that the categories are instances of the same ob-

ject, but imaged objects are not necessarily composed of a single material.

As textures are imaged under variable truncation, viewpoint, and illumination,

these datasets have stimulated the creation of texture representations that are in-

variant to viewpoint and illumination changes [Varma and Zisserman, 2005; Ojala

et al., 2002; Varma and Zisserman, 2003; Leung and Malik, 2001].

One of the first proposed texture datasets is Brodatz [Brodatz, 1966], which

consists of 111 images which are cut into 9 non-overlapping patches of equal size,

giving 999 image samples, 9 per class. These textures are greyscale images and

don’t present any viewpoint and illumination variations for the samples that belong

to the same instance, that is, extracted from the same photograph in the album.

The small number of samples and lack of inter-class variation make this dataset a
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Size Condition Content Instances /
Dataset Images Classes Splits Wild Clutter Controlled Attr. Mat. Obj. Categories

Brodatz 999 111 – X X I
CUReT 5612 61 10 X X I
UIUC 1000 25 10 X X I
UMD 1000 25 10 X X I
KTH 810 11 10 X X I
Outex – – – X X X I
Drexel ∼40000 20 – X X I
ALOT 25000 250 10 X X I

FMD 1000 10 14 X X C
KTH-T2b 4752 11 X X C

DTD 5640 47 10 X X C
OS 10422 22 1 X X X C
OSA 1720 10 1 X X X C

Table 2.1: Comparison of existing texture datasets, in terms of size, collection con-
dition, nature of the classes to be recognized, and whether each class includes a
single object/material instance or several instances of the same category. Note that
Outex is a meta-collection of textures spanning different to problems.

simple one, fact confirmed also by the high accuracy achieved on this set.

The most popular and widely used texture database is CUReT [Dana et al.,

1999], which contains 61 material classes, collected under 200 different combinations

of viewing and illumination directions. Only a subset of 92 images per class, con-

taining cropped central region, are commonly used for reporting results, the other

samples being filtered out due to extreme viewpoint conditions. Compared to Bro-

datz, the novelty in CUReT is using colour images, representing common material

surfaces, and it contains a larger number of samples per class.

KTH-TIPS (Textures under varying Illumination Pose and Scale) database

was proposed [Hayman et al., 2004] to compensate the lack of scaling effects in

the CUReT database, and was designed aiming to supplement CUReT. KTH-TIPS

contains 10 material classes, a subset of CUReT materials, and there are 81 images

for each sample, representing all the combinations of 9 scales, 3 different illumination

directions (front, side and top) and three object poses.

Another dataset used for texture classification is ALOT (Amsterdam Library
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of Textures) [Burghouts and Geusebroek, 2009], which is a colour image collection

of 250 rough textures, similar to CUReT, and although it exposes only a half of the

view-illumination directions per material available in CUReT, ALOT expands the

number of materials approximately 5 times and also introduces mixtures of materials

and improves upon image resolution and colour quality.

UIUC is a set consisting of 1000 uncalibrated, greyscale images, with 40 samples

for each of the 25 texture categories [Lazebnik et al., 2005]. The resolution of the

samples is 640 x 480. The textures considered have the appearance given by albedo

variation (wood or marble), 3D shape, in the case of fur, and even a mixture of

the two, for bricks. The images were captured under uncontrolled illumination,

and additional sources of variation, such as non-planarity of the surface, non-rigid

deformations between different samples of the same class and viewpoint-dependent

appearance variations, were deliberately introduced during acquisition.

A similar set, UMD [Xu et al., 2009], contains 1000 greyscale images, but the

textures are non-traditional, including fruit, shelves of bottles, plants and floor

textures. The higher resolution (1280 x 960) was needed in order to prove that MFS

(multi-fractal spectrum) texture signature was invariant to local linear illumination,

which has been obtained for the continuous case, assuming very small ratio of a

measurement function to image resolution. The images in this dataset were captured

“in the wild”, in uncontrolled illumination and viewing angle.

2.2.2 Material Recognition

Frequently, texture understanding is formulated as the problem of recognizing the

material of an object rather than a particular texture instance (in this case any two

slabs of marble would be considered equal). KTH-T2b [Mallikarjuna et al., 2005] is

one of the first datasets to address this problem by grouping textures not only by

the instance, but also by the type of materials (e.g.“wood”).
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KTH-TIPS was extended to material recognition in KTH-TIPS2 [Mallikarjuna

et al., 2005], collected following a similar procedure as for KTH-TIPS, with some

differences regarding scale range and illumination. The same three poses (frontal,

rotated 22.5◦ left and right) were kept, but an additional illumination condition

was introduced, by using fluorescent lights. There are two versions of KTH-TIPS2

dataset: KTH-TIPS2-a, in which, for four of the samples the images from the initial

database were used, thus having only 72 images per sample, and the completed

KTH-TIPS2-b version, which had 108 images for all the 11 samples.

Most of the datasets reviewed so far make the simplifying assumption that tex-

tures fill images, and often there is limited intra-class variability, due to single or

limited number of instances, captured under controlled scale, view-angle and illu-

mination. Thus, they are not representative of the significantly harder problem of

recognizing materials in natural images, where textures appear under poor viewing

conditions, low resolution, and in clutter. Addressing this limitation is the main

focus the Flickr Material Database (FMD) [Sharan et al., 2009]. FMD samples

just one viewpoint and illumination per object, but contains many different objects

instances grouped in several different materials classes. FMD consists of 10 ma-

terial classes: wood, paper, stone, metal, plastic, glass, fabric, leather, water and

foliage, having 100 images per category. It is more challenging than the existing

texture databases, because it contains images belonging to high level classes, which

show high inter-class variation in appearance and object geometry. This dataset

was collected from Flickr, and was originally designed for studying visual percep-

tion of materials. Along with KTH-T2b, this is the first proper material dataset,

other datasets containing images of a single texture instance per class, photographed

under various viewing conditions; a crucial difference with KTH-T2b is that most

texture instances in FMD appear only once in the dataset, under a single viewpoint

and illumination.
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Most of these datasets discussed so far are close to saturation with state-of-

the-art classification accuracy above 95%; KTH-T2b and FMD are an exception

due to their increased complexity. A review of these datasets and classification

methodologies is presented in Timofte and Van Gool, 2012, who also propose a

“training-free” framework (using nearest-neighbour methods) to classify textures,

significantly improving on other methods. Table 2.1 provides a summary of the

nature and size of various texture datasets that are used throughout our experiments.

2.3 Texture Representations

In order to recognise textures automatically it is necessary to construct mathemat-

ical descriptions or representations of texture images. Early representations built

on Julesz’s conjecture [Julesz, 1962] that two textures are perceptually indistin-

guishable if they have identical second order statistics. Later, this conjecture was

disproven, and the notion of textons was introduced, to define primitive elements of

texture [Julesz, 1981], like crossings, orientation elements and terminators.

Initially, texture recognition was considered primarily a 2D problem. The idea

of consider natural texture recognition as a 3D problem was first presented in Le-

ung and Malik, 1999, which introduces the notion of 3D textons. In this paper,

2D textons are defined as prototype vectors, which are cluster centres from filter

responses, which is the first practical definition of textons. This definition is fur-

ther extended by considering a stack of images of the same texture, from different

lighting and viewing directions, for which the filter responses are concatenated, and

the K-means cluster centres are called 3D textons. These 3D textons are useful in

capturing the 3D nature of the surface, shadows, occlusions, while the models from

the traditional methods would be able to capture only surfaces that look flat, due

to the assumptions that the surfaces are painted with a Lambertian material.

A similar method, but using 2D textons was proposed by Cula and Dana, 2001,
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Brodatz

CUReT

KTH-TIPS

UIUC

UMD

ALOT

Figure 2.2: Instance recognition benchmarks. We show some representative
samples from the most frequently used texture / material recognition benchmarks.
For these datasets, the common characteristic of this datasets is that one instance
of a given material or surface is photographed under controlled conditions. For
example, two different leaves would be different classes in these datasets.

based on BTF (bidirectional texture function) [Dana and Nayar, 1998]. In this

approach, during dictionary generation, the filter responses were grouped by scale,

and clustered without being concatenated. This way, there were multiple models

for each texture category, depending on viewing and illumination conditions. The

authors also developed a method to reduce the number of models, using PCA for

projecting the training and test histograms into a lower dimensional space.
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KTH-TIPS2-b

FMD
Figure 2.3: Material category recognition benchmarks. We show some repre-
sentative samples from KTH-TIPS2-b and Flickr Material Dataset (DTD). The for-
mer is collected in controlled conditions, but there are four “samples” photographed
for each category. For the latter, each image represents a different instance of the
category, captured in unknown and unconstrained illumination and viewpoint.

A texture is characterised in general by the arrangement of local patterns, which

was captured in early works [Leung and Malik, 2001; Varma and Zisserman, 2003]

by the distribution of local “filter bank” responses. These filter banks were de-

signed to capture edges, spots and bars at different scales and orientations. Typical

combinations of the filter responses, identified by vector quantization, were used as

the computational basis of the “textons” proposed by Julesz [Julesz and Bergen,

Jul-Aug 1983]. Texton distributions were the early versions of “bag-of-words” rep-
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resentations, a dominant approach in recognition in the early 2000s.

The filter bank proposed by Leung and Malik [Leung and Malik, 2001] is a multi-

scale, multi-orientation filter bank, consisting of 48 filters. These are bar filters –

two derivative of Gaussian, at six orientations and three scales, and spot filters, 8

Laplacian of Gaussian and 4 Gaussian filters. S (Schmid) filter bank [Schmid, 2001],

consists of 13 rotation invariant filters, which combine scale and frequency.

The MR8 filter bank [Varma and Zisserman, 2002; Varma and Zisserman, 2005;

Geusebroek et al., 2003] consists of 38 filters, but only 8 responses are recorded.

These 38 filters are: a bar filter and an edge filter, at three scales and six orientations,

but only the maximum response across orientations is used, resulting in 6 responses;

the other two filters are a Gaussian and a Laplacian of Gaussian.

A simple, yet very efficient descriptor was proposed by Ojala et al., 2002. The

descriptor, based on local binary patterns (LBP), at multiple resolutions, achieves

greyscale and rotation invariance. The operator, used to obtain “uniform” binary

patterns, is designed with two parameters, one that controls the spatial quantization

of the angular space and one which controls the spatial resolution. Although initially

designed for textures, the proposed descriptor was successfully extended and applied

to textures [Sulc and Matas, 2014] and other recognition tasks as well.

The VZ-Joint classifier [Varma and Zisserman, 2009] surpassed existing state-of-

the-art classifiers, based on filter responses, by considering joint distribution of pixel

intensities in a neighbourhood (a square patch centred at the pixel). The authors

evaluated two versions of the Joint classifier – a neighbourhood classifier and an

MRF classifier. In the case of the neighbourhood classifier, the central pixel of the

patch is discarded, and only the neighbourhood is used for classification. The MRF

classifier, on the other hand, models explicitly the joint distribution of the central

pixel and its neighbours.

A detailed evaluation was presented in Mikolajczyk et al., 2005, comparing vari-
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ous local descriptors for local interest regions, and how these depend on the interest

region detector [Mikolajczyk and Schmid, 2005]. This work compares the descriptors

in the context of matching two images of the same scene, under variations: rota-

tion, zoom, viewpoint change. In Mikolajczyk et al., 2005, the authors proposed an

extension of SIFT [Lowe, 1999], designed to increase its robustness and distinctive-

ness. This descriptor, called gradient location and orientation histogram (GLOH) is

computed as a 272 bin histogram, using 17 location bins, placed angularly, at three

radii, and gradient orientations being quantized in 16 bins. This is reduced via PCA

to 128 dimensions.

The DAISY descriptor [Tola et al., 2008] was inspired by SIFT and GLOH,

can be very efficiently computed. At each pixel location, the DAISY descriptor

consists of values of orientation maps, for different scales, computed on a circular

grid, as opposed to the regular one, used in SIFT. There were several improvements

to DAISY descriptor, like robust normalization, dimension reduction [Winder et

al., 2009; Brown et al., 2011], resulting in a compact and highly efficient local

descriptor. Simonyan et al., 2012, propose using convex optimisation for learning

the pooling regions and reducing the dimensionality of the DAISY descriptor.

Liu et al., 2010 proposes a method to exploit the correlation between reflectance

properties and the material’s high-level category, in order to classify images con-

taining materials which belong to ten categories, using FMD [Sharan et al., 2009]

as benchmark, and the features used for discrimination include both low and mid-

level features, which are combined under a Bayesian generative framework, using

augmented Latent Dirichlet Allocation (aLDA). The results were improved by using

multiple features with a discriminative SVM classifier [Sharan et al., 2013], to 57.1%

accuracy.

Comparable results for FMD are reported, obtained using Basic Image Features

(BIFs), and a training-free framework, based on Nearest Neighbour Classifier and
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Nearest Mean Classifier (NMC) [Timofte and Van Gool, 2012]. The method also

obtains top classification results on standard benchmarks for texture classification

(CUReT, UMD, UIUC), and notably, KTH-T2b, improving by 8% on the previous

best.

Local higher-order statistics (LHS) vectors of Sharma et al., 2012 exploit the

rich information of small (3x3) pixel neighbourhoods. A local differential vector is

obtained by subtracting the (grey) value of a central pixel from the values of the

other pixels from the 8-neighbourhood. Then, a Gaussian Mixture Model is used for

soft quantization, and the image representation is obtained by averaging the Fisher

score of all differential vectors.

The method proposed by Sifre and Mallat, 2013, consists of a deep convolution

network, with wavelet filters and modulus non-linearities. Invariance to rotations

and translations is achieved using the scattering transform operator. This architec-

ture is similar to convolutional networks, with the difference that the filters are not

learned, but they are scaled and rotated wavelets.

Ffirst [Sulc and Matas, 2014], is a computationally efficient descriptor, based on

LBP. It uses LBP histogram Fourier features, for both sign and magnitude, and

the two histograms are concatenated to obtain the descriptor. Multiscale invariance

is obtained by using circular neighbourhoods with an exponentially growing radius,

and a finer scaling. Surprisingly, the Ffirst descriptor achieves similar performance as

the combination of Fisher Vector pooled SIFT and fully connected layer activations

(DeCAF [Donahue et al., 2013]), as introduced in Cimpoi et al., 2014.

More recently, texture and material recognition methods have improved, due to

new pooling schemes such as soft-assignment [Wang et al., 2010; Zhou et al., 2010;

Liu et al., 2011] and Fisher Vectors (FVs) [Perronnin et al., 2010]. Until recently,

FV with SIFT features [Lowe, 1999] as a local representation was the state-of-the-

art method for recognition for objects and scenes; we ported some of these methods
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to texture recognition in this thesis.

2.3.1 Deep Representations

Similarly to object recognition, most of the previous work on texture and material

recognition focused on improving representations, from local features to encodings.

The majority of these methods, which we summarised in Section 2.3, are mostly

handcrafted, following the standard pipeline: computing local descriptors, then en-

coding them into a higher dimensional representation (Bag of Visual Words [Csurka

et al., 2004; Sivic and Zisserman, 2003], VLAD [Jégou et al., 2010], Fisher Vec-

tor [Perronnin and Dance, 2007; Perronnin et al., 2010]). The local descriptors for

texture recognition are in general responses of filter banks, distributions of patches

or small neighbourhoods, or, more recently, LBP-based.

For object recognition tasks, deep representations, obtained using Convolutional

Neural Networks [LeCun et al., 1989], were shown to outperform the standard (shal-

low) methods [Chatfield et al., 2011; Chatfield et al., 2014] on benchmarks such as

PASCAL VOC Everingham et al., 2007 and ImageNet Deng et al., 2009. These

representations, for both textures and objects, are fed to a classifier, which could

be a linear SVM [Cortes and Vapnik, 1995], a random forest [Amit et al., 1997;

Breiman, 2001], or in fact, any multi-class classifier. Since non-linear SVMs are

costly to evaluate and train, they could be approximated by linear ones, using ex-

plicit feature maps [Vedaldi and Zisserman, 2010]. The idea was further extended

to learning multiple kernels [Bach et al., 2004].

Recent state-of-the-art methods on object recognition using CNNs are still evolv-

ing as they require sophisticated implementations on GPU, the exploration of vast

model spaces including variations in network architecture, and addressing large scale

datasets and data augmentation [Krizhevsky et al., 2012; Simonyan and Zisserman,

2014; Chatfield et al., 2014; Sermanet et al., 2013; Jia, 2013].
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As shown in Donahue et al., 2013 and Girshick et al., 2014, the first fully con-

nected layer of a network trained on ImageNet can be used as a powerful descriptor

on other datasets, including textures, as shown later in this thesis. Our work is

related to Gong et al., 2014, which proposes using VLAD for pooling activations of

fully connected layers of a CNN, densely sampled over the image. The key differ-

ence is that we are using the outputs of a convolutional layer, which is more natural

and efficient, as we show later in Chapter 5, and does not incorporate long-range

spatial information which is suitable for texture recognition. Another advantage

of our method is also flexibility in selecting which and how many scales to use in

representing an image, as well as the ability of quickly computing the representation

for image subregions.

Conclusions. Texture is ubiquitous and provides important visual cues, in partic-

ular when shape and colour are not useful. There has been a lot of interest in textures

in the vision community, which triggered the development of local descriptors and

image representations. Although a number of these descriptors were developed to

recognize textures captured under controlled conditions, realistic scenarios, with im-

ages collected “in the wild” are more difficult. More complex descriptors, as SIFT,

and recently, CNNs are taking over. However, we should not discard these methods

and simply replace them with CNNs, but rather draw inspiration from this prior

work, to improve the way CNNs work, or design hybrid architectures, like FV-CNN,

which will be introduced in the next Chapter.



Chapter 3

Describing Textures With

Attributes

In this chapter we look at the problem of automatically describing texture patterns

using a general-purpose vocabulary of interpretable texture properties, similarly to

how we can vividly characterise the textures shown in Figure 1.1 using a variety

of words in English. Our goal is to design algorithms capable of generating and

understanding texture descriptions involving a combination of describable attributes

for each texture. The aim is to fill a gap in the space of visual attributes that

can be understood by computer vision systems for the purposes of material and

texture recognition. Attributes have been used in search, to understand complex

user queries, in learning, to port textual information back to the visual domain, and

in image description, to produce richer accounts of the content of images. Textural

properties have an important role in these descriptions, particularly for objects that

are best qualified by a pattern, such as a scarf or the wing of bird or of a butterfly.

Nevertheless, the attributes of textures have been investigated only tangentially so

far.

The first step in filling this gap is to introduce the Describable Textures

31
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Dataset (DTD), a collection of real-world texture images annotated with one or

more adjectives selected in a vocabulary of forty-seven English words. These adjec-

tives, or describable texture attributes, are illustrated in Figure 3.1 and include words

such as banded, cobwebbed, freckled, knitted, and zigzagged. Section 3.1 describes this

data in more detail. Section 3.1.1 discusses the technical challenges designing and

collecting DTD, including how the forty-seven texture attributes were selected and

how the problem of collecting numerous attributes for a vast number of images was

addressed.

3.1 Describable Textures Dataset

DTD investigates the problem of texture description, intended as the recognition of

describable texture attributes. This problem differs from standard texture analysis

tasks such as texture identification and material recognition (Section 2.2). While

describable attributes are correlated with materials, attributes do not imply mate-

rials (e.g.veined may equally apply to leaves or marble) and materials do not imply

attributes (not all marbles are veined). Describable attributes can be combined to

create rich descriptions (Figure 3.5; marble can be veined, stratified and cracked at

the same time), whereas a typical assumption is that textures are made of a single

material. Describable attributes are subjective properties that depend on the imaged

object as well as on human judgements, whereas materials are objective. In short,

attributes capture properties of textures complementary to materials, supporting

human-centric tasks where describing textures is important. At the same time, they

will be shown to be helpful in material recognition too (Section 7.1).

DTD contains textures in the wild, i.e. texture images extracted from the web

rather than captured or generated in a controlled setting. In most of our images,

texture fills the entire image – this was by design so that we can study the problem

of texture description independently of texture segmentation. With 5,640 such im-
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banded blotchy braided bubbly bumpy chequered cobwebbed

cracked crosshatched crystalline dotted fibrous flecked freckled

frilly gauzy grid grooved honeycombed interlaced knitted

lacelike lined marbled matted meshed paisley perforated

pitted pleated polka-dotted porous potholed scaly smeared

spiralled sprinkled stained stratified striped studded swirly

veined waffled woven wrinkled zigzagged

Figure 3.1: The 47 texture words in the describable texture dataset introduced
in this paper. Two examples of each attribute are shown to illustrate the significant
amount of variability in the data.

ages, this dataset aims at supporting real-world applications where the recognition

of texture properties is a key component. Collecting images from the Internet is

a common approach in categorization and object recognition, and was adopted in

material recognition in FMD. This choice trades-off the systematic sampling of illu-

mination and viewpoint variations existing in datasets such as CUReT, KTH-TIPS,

Outex, and Drexel datasets for a representation of real-world variations, shortening

the gap with applications. Furthermore, the invariance of describable attributes is
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Figure 3.2: Instructions for Amazon Mechanical Turk annotators. For each
of the 47 categories, the annotators were presented example images for each possible
answer: definitely belongs to the category, belongs somewhat or clearly the image does
not belong to the desired category. In addition to the example images, the dictionary
definition and further explanations are provided. The choices are also colour coded,
to match the answer option.

not an intrinsic property as for materials, but it reflects invariance in the human

judgements, which should be captured empirically.

3.1.1 Dataset Design and Collection

This section discusses how DTD was designed and collected, including: selecting

the 47 attributes, finding at least 120 representative images for each attribute, and

collecting all the attribute labels for each image in the dataset.
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3.1.2 Selecting the Describable Attributes

Psychological experiments suggest that, while there are a few hundred words that

people commonly use to describe textures, this vocabulary is redundant and can be

reduced to a smaller number of representative words. Our starting point is the list

of 98 words identified by Bhushan, Rao and Lohse [Bhushan et al., 1997], which,

while not being exhaustive, covers a wide variety of textures. Their seminal work

aimed to achieve for texture recognition the same that colour words have achieved for

describing colour spaces [Berlin and Kay, 1991]. However, their work mainly focuses

on the cognitive aspects of texture perception, including perceptual similarity and

the identification of directions of perceptual texture variability. Development of

DTD is based on the work done at CLSP 2012 Summer Workshop [Blaschko et al.,

2012]. The first iteration of this dataset consisted of 100 images for each of the

98 terms in the list, downloaded from Google image search and Flickr. However,

after manual inspection, we discovered terms which refer to higher-level properties

of texture, such as: asymmetrical, complex, cyclical, discontinuous, harmonious,

repetitive, rhythmic. These terms describe the structure of the texture, and do

not map to a certain texture category – both chequered and honeycombed could be

regular, repetitive. Since these terms are too generic, and there are no representative

images for them, we removed them from the list. We also noted that some of the

terms are synonyms or visually similar e.g. crinkled, wizened and wrinkled, coiled,

corkscrewed and swirly, or gouged, furrowed and grooved. For these terms, identified

by similar image search results, and checking definitions in online dictionaries, we

decided to merge the images corresponding to similar terms into one category. This

resulted in a set of 47 words, illustrated in Figure 3.1.
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Figure 3.3: Amazon Mechanical Turk Annotation Interface. For each of the
47 categories, the annotators were presented a series of images, and were asked to
indicate how much an image represents the category in question, in this example,
chequered. The answers are shown with a checkmark.

3.1.3 Bootstrapping the Key Images

Given the 47 attributes, the next step was collecting a sufficient number (120) of

example images representative of each attribute. A very large initial pool of about

a hundred-thousand images was downloaded from Google and Flickr by entering

the attributes and related terms as search queries. These queries included the cate-

gory name, as well as augmentations of this query: banded pattern, banded texture,

chequered material, polka dots. First, we prepared the images to be annotated on
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Sequential + CV

Sequential

Figure 3.4: Quality of joint sequential annotations. Each bar shows the average
number of occurrences of a given attribute in a DTD image. The horizontal dashed
line corresponds to a frequency of 1/47, the minimum given the design of DTD
(Section 3.1.1). The black portion of each bar is the amount of attributes discovered
by the sequential procedure, using only 10 annotations per image (about one fifth
of the effort required for exhaustive annotation). The orange portion shows the
additional recall obtained by integrating CV in the process.

Amazon Mechanical Turk (AMT), by removing low resolution, poor quality, water-

marked images, or images that were not almost entirely filled with a texture. Images

with watermarks were removed directly from the queries, indicating Google image

search to exclude paid stock image websites – because of watermark and copyright

reasons. Also, queries contained parameters to return only images of size larger than

300×400 pixels.

Next, detailed annotation instructions were created for each of the 47 attributes,

including a dictionary definition of each concept, from an online dictionary, and

examples of correct and incorrect matches. Example instructions for the chequered

class are shown in Figure 3.2. Votes from three to five AMT annotators were col-

lected for the candidate images of each attribute, resulting in a short-list of about

200 highly-voted images was further manually checked by the authors to eliminate

remaining errors.

The first iteration of annotations, done at CLSP Workshop, used three anno-

tators per image, and The Mechanical Turk workers were presented with a set of
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20 images in each batch. We noted that several images didn’t meet the desired

quality – watermarks, low resolution or not covering at least 90% of the image.

We repeated the collection process, this time, filtering those images automatically,

through query parameters, and through brief manual inspection before submitting

them to Mechanical Turk.

We posted the images on Mechanical Turk in batches of 50 per assignment, and

paid 0.05$ per assignment. This decision was motivated by the fact that Amazon

charges 10% of the assignment cost, with a minimum fee of 0.005$, therefore we

had to pay at least 5 cents of a dollar per task, in order to keep the amount of fees

to 10% of the cost. The user interface for collecting the annotations, with example

images and the corresponding answers is shown in Figure 3.3.

The work submitted by the annotators, called HITs (Human Intelligence Tasks)

in the Amazon MTurk interface, can be approved by the requester, if it meets

the desired quality, or rejected, otherwise. The annotators are paid only for the

approved hits, and the number and percentage of approved work is an indicator of

the annotator quality. The number of approved tasks or the percentage of approved

work may be used as a qualifications to filter the annotators which are allowed to

work on the submitted tasks. We selected workers with 90% approval rate and at

least 100 approved HITs. We approved automatically the HITs, if the answers were

in agreement with the majority vote for 70% of the images – a ratio which we found

empirically to be sufficient to get enough useful annotations, and rejected the work

otherwise. Images for which the votes were negative, that is, annotators indicated

that the image does not reflect the term, or there was no clear majority vote (2 vs

3 answers) were added back to the pool of images to be annotated.

In the annotation process, we also experimented with repeating some of the

images within the batch, rotated and with slight hue/saturation changes, to measure

intra-annotator agreement. The goal of this approach was to filter out annotators



3.1. DESCRIBABLE TEXTURES DATASET 39

who solve the tasks randomly. This metric was computed as the percentage of

duplicate annotations for which the answers were consistent. The disadvantages

of this approach, shown to give similar results as using annotators’ history, are

increasing the cost per image with a percent equal to the percentage of duplicate

images, as well as having unbalanced number of annotations per image. In our

experiments, we used these extra annotations only for checking annotator’s self-

consistency.

Another experiment we considered was to treat the proposed attributes as rel-

ative, and to collect annotations for pairs of images. Although more accurate –

because of larger number of annotations collected per image, this process would be

very expensive. The number of pairwise comparisons would go quadratically with

the number of images. Also, there are categories for which relative comparisons are

not applicable, e.g. banded : how to decide which of two banded images is “more

banded” than the other? Possible answers are: density of stripes, number of stripes,

width of stripes, but the answer is not easy to define.

The result of this selection process is a dataset of 120 key representative images

for each of the 47 attributes. The annotation pipeline could be further improved,

for extending the dataset. Already having an initial set of images, we could use the

scores from the classifiers learnt on the existing images to decide for which of the

new images to collect annotations.

3.1.4 Sequential Joint Annotation

So far only the key attribute of each image is known while any of the remaining

46 attributes may apply as well. Exhaustively collecting annotations for another 46

attributes for each of the 5,640 texture images is fairly expensive. To reduce this

cost we propose to exploit the correlation and sparsity of the attribute occurrences

(Figure 3.5). Twelve key images for each attribute q, are annotated exhaustively
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q

q′

Figure 3.5: Co-occurrence of attributes. The matrix shows the joint probability
p(q, q′) of two attributes occurring together (rows and columns are sorted alphabet-
ically, as in the previous figure).

with all 47 attributes, and used to estimate the probability p(q′|q) that another

attribute q′ could co-exist with q. Then for the remaining key images of attribute

q, only annotations for attributes q′ with non negligible probability – in practice 4

or 5 – are collected, assuming that the rest of the attributes would not apply. This

procedure occasionally misses attribute annotations; Figure 3.4 evaluates attribute

recall by 12-fold cross-validation on the 12 exhaustive annotations for a fixed budget

of collecting 10 annotations per image (instead of 47).

A further refinement is to suggest which attributes q′ to annotate not just based

on q, but also based on the appearance of an image ℓi. This was done by using the

attribute classifier learned in Section 4.2, and incorporating the score of attributes

in the decision process; after Platt’s calibration [Platt, 2000], the classifier score

cq′(ℓi) ∈ R is transformed in a probability p(q′|ℓi) = σ(cq′(ℓ)) where σ(z) = 1/(1 +

eAz+B) is the sigmoid function, with parameters A and B learnt on an held-out test
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set. To reflect the probability p(q′|q) instead, a score is computed as

p(q′|ℓi, q) ∝ σ(cq′(ℓi))×
p(q′|q)

1− p(q′|q) ×
1− p0
p0

and used to find which attributes to annotate for each image. The score could be

seen as a probability, by using a normalization constant. In this score, we account

for the classification score for attribute q′ for the given image ℓi, as well as the co-

occurrence probability p(q′|q), and inversely proportional to the probability of the

attribute q′ not occurring, given the key attribute q. Although the value of 1−p0
p0

is

a constant, equal to 46, and it only scales the proportionality constant, we included

it to reflect the prior probability of co-occurrence, based on the assumption that

textures are uniformly distributed in the dataset, by design.

As shown in Figure 3.4, for a fixed annotation budged this method increases

attribute recall. Overall, with roughly 10 annotations per images it was possible

to recover all of the attributes for at least 75% of the images, and miss one out of

four (on average) for another 20% while keeping the annotation cost to a reasonable

level.

3.1.5 Benchmark Tasks

DTD is designed as a public benchmark. The data, including images, annotations,

and splits, is available on the web at http://www.robots.ox.ac.uk/~vgg/data/

dtd/, along with code for evaluation and reproducing the results in Chapter 5.

DTD defines two challenges. The first one, denoted DTD, is the prediction of

key attributes, where each image is assigned a single label corresponding to the key

attribute defined above. The second one, denoted DTD-J, is the prediction of multi-

ple attributes. In this case each image is assigned one or more labels, corresponding

to all the attributes that apply to that image.

The first task is evaluated both in term of classification accuracy (acc) and in

http://www.robots.ox.ac.uk/~vgg/data/dtd/
http://www.robots.ox.ac.uk/~vgg/data/dtd/
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term of mean average precision (mAP), while the second task only in term of mAP

due to the possibility of multiple labels. The classification accuracy normalised per

class: if ĉ(x), c(x) ∈ {1, . . . , C} are respectively the predicted and ground-truth

label of image x, accuracy is defined as

acc(ĉ) =
1

C

C
∑

c̄=1

|{x : c(x) = c̄ ∧ ĉ(x) = c̄}|
|{x : c(x) = c̄}| . (3.1)

mAP is defined as for the PASCAL VOC 2008 benchmark onward Everingham et

al., 2008.

DTD contains 10 preset splits into equally-sized training, validation and test

subsets for easier algorithm comparison. Results on any of the tasks are repeated

for each split and average accuracies are reported.

3.2 Textures and Materials in Clutter

The previous section introduced our first contribution in the study of the texture

patterns, namely the study of describable texture attributes. This section looks

instead at our second contribution: studying the recognition of materials and de-

scribable textures attributes not only “in the wild,” but also “in clutter”. Even in

datasets such as FMD and DTD, in fact, each texture sample fills the entire im-

age, which is not useful in most applications. This section removes this limitation

and looks at the problem of recognizing textures imaged in the larger context of a

complex natural scene, including the challenging task of automatically segmenting

textured image regions.

Masks are provided in FMD, but since most of the images are covered entirely by

one material, in practice the utility of the masks is small (our own methods don’t use

masks). In addition, FMD is a relatively small dataset (1000 images, 10 classes).

We remove this last-standing limitation of isolating the texture and materials in
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brick cardboard carpet

ceramic concrete fabric

food glass granite

hair laminate leather

metal painted paper

plastic stone tile

wallpaper wood other

Figure 3.6: Example material segments from the Open Surfaces dataset. For each
category, we show two images, the left one representing the source image, from
which the segments shown on the right were extracted. Note the variations in scale,
illumination, viewing angle, even within the same material segment.

images, by experimenting with a large dataset of textures collected in the wild and

in cluttered conditions.

Rather than collecting a new image dataset, the starting point is the excellent

Open Surfaces (OS) dataset that was recently introduced by Bell et al., 2013. OS

comprises 25,357 images, each containing a number of high-quality texture/material

segments. Many of these segments are annotated with additional attributes such
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as the material, viewpoint, BRDF estimates, and object class. Experiments focus

on the 58,928 segments that contain material annotation. Since material classes

are highly unbalanced, we consider only the materials that contain at least 400

examples. This results in 53,915 annotated material segments in 10,422 images

spanning 22 different classes1, from which we show some examples in Figure 3.6.

Images are split evenly into training, validation, and test subsets with 3,474 images

each. Segment sizes are highly variable, with half of them being relatively small,

with an area smaller than 64 × 64 pixels. One issue with crowd-sourced collection

of segmentations is that not all the pixels in an image are labelled. This makes

it difficult to define a complete background class. For our benchmark several less

common materials (including for example segments that annotators could not assign

to a material) were merged in an “other” class that acts as the background.

Finally, in order to study perceptual properties as well as materials, the OS

dataset was augmented with some of the describable attributes of Section 3.1. Since

the OS segments do not trigger with sufficient frequency all the 47 attributes, the

evaluation is restricted to eleven of them for which it was possible to identify at

least 100 matching segments.2 The attributes were manually labelled in the 53,915

segments retained for materials. We refer to this data as OSA.

3.2.1 Benchmark Tasks

As for DTD, the aim is to define standardized image understanding tasks to be used

as public benchmarks. The complete list of images, segments, labels, and splits are

publicly available at http://www.robots.ox.ac.uk/~vgg/data/dtd/.

1The classes and corresponding number of example segments are: brick (610), cardboard (423),
carpet/rug (1,975), ceramic (1,643), concrete (567), fabric/cloth (7,484), food (1,461), glass (4,571),
granite/marble (1,596), hair (443), other (2,035), laminate (510), leather (957), metal (4,941),
painted (7,870), paper/tissue (1,226), plastic/clear (586), plastic/opaque (1,800), stone (417), tile
(3,085), wallpaper (483), wood (9,232).

2These are: banded, blotchy, chequered, flecked, gauzy, grid, marbled, paisley, pleated, strati-
fied, wrinkled.

http://www.robots.ox.ac.uk/~vgg/data/dtd/
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The benchmarks include two tasks on two complementary semantic domains.

The first task is the recognition of texture regions, given the region extent as ground

truth information. This task is instantiated for both material, denoted OS+R,

and describable texture attributes, denoted OSA+R. Performance in OSR+R is

measured in term of classification accuracy and mAP, using the same definition (3.1)

where images are replaced by image regions. Performance in OSA+R uses instead

mAP due to the possibility of multiple labels.

The second task is the segmentation and recognition of texture regions, also in-

stantiate for materials (OS) and describable texture attributes (OSA). Since not all

image pixels are labelled in the ground truth, performance of a predictor ĉ is mea-

sured in term of per-pixel classification accuracy pp-acc(ĉ). This is computed using

the same formula as (3.1) with two modification: first, the images x are replaced by

pixels p (extracted from all images in the dataset); second the ground truth label

c(p) of a pixel may take an additional value 0 to denote pixels that are not labelled

in the ground truth (the effect is to ignore them in the computation of accuracy).

In the case of OSA, per-pixel accuracy is modified such that a class prediction is

considered correct if it belongs to any of the ground-truth pixel labels.



Chapter 4

Texture Representations

This chapter discusses texture recognition methods, setting up a framework for their

systematic evaluation and comparison. Texture recognition starts from the problem

of representing images of textures. In general, a visual representation is a map that

takes an image x to a vector φ(x) ∈ R
d that facilitates understanding the image

content. Classification is often achieved by learning a linear predictor 〈φ(x),w〉

scoring the strength of association between the image and a particular concept,

such as an object category.

Among image representations, in this thesis we are particularly interested in the

class of texture representations pioneered by the work of Malik and Perona, 1990

and Leung and Malik, 2001. Textures encompass a large diversity of visual patterns,

from regular repetitions such as wallpapers, to stochastic processes such as fur, to

intermediate cases such as pebbles. Distortions due to viewpoint and other imaging

factors further complicate modelling textures. However, one can usually assume

that, given a particular texture, appearance variations are statistically independent

in the long range and can therefore be eliminated by averaging local image statis-

tics over a sufficiently large texture sample. Hence, the defining characteristic of

texture representations is to pool information extracted locally and uniformly from

46
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the image, by means of local descriptors, in an orderless manner.

The importance of texture representations is in the fact that they were found

to be applicable beyond textures, or inspiring methods applied on other tasks. For

example, until recently most of the best object categorization methods in challenges

such as PASCAL VOC [Everingham et al., 2007] and ImageNet ILSVRC [Deng et

al., 2009] were based on variants of texture representations. One of the contributions

of this work is to show that these broadly-applicable texture representation variants

are in fact optimal for a large number of texture-specific problems as well, often

surpassing dedicated representations (Section 5.1.3).

More recently, texture representations have been significantly outperformed by

Convolutional Neural Networks (CNNs) in object categorization [Krizhevsky et al.,

2012], detection [Girshick et al., 2014], segmentation [Hariharan et al., 2014], and

in fact in almost all domains of image understanding. Key to the success of CNNs

is their ability to leverage large labelled datasets to learn high-quality features. Im-

portantly, CNN features pre-trained on very large datasets were found to transfer

to many other domains with a relatively modest adaptation effort [Jia, 2013; Oquab

et al., 2014; Razavin et al., 2014; Chatfield et al., 2014; Girshick et al., 2014]. Hence,

CNNs provide general-purpose image descriptors.

While CNNs generally outperform classical texture representations, it is inter-

esting to ask what is the relation between these two methods and whether they can

be fruitfully hybridized. Standard CNN-based methods such as [Jia, 2013; Oquab

et al., 2014; Razavin et al., 2014; Chatfield et al., 2014; Girshick et al., 2014] can

be interpreted as extracting local image descriptors (performed by the so called

“convolutional layers”) followed by pooling such features in a global image repre-

sentation (performed by the “Fully-Connected (FC) layers”). Here we will show

that replacing FC pooling with one of the many pooling mechanism developed in

texture representations has several advantages: (i) a much faster computation of
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the representation for image subregions accelerating applications such as detection

and segmentation [Girshick et al., 2014; He et al., 2014; Gong et al., 2014], (ii) a

significantly superior recognition accuracy in several application domains and (iii)

the ability of achieving this superior performance without fine-tuning CNNs by im-

plicitly reducing the domain shift problem.

In order to systematically study variants of texture representations φ = φe ◦ φf ,

we break them down in local descriptor extraction φf followed by descriptor pooling

φe. In this manner, different combinations of each component can be evaluated.

Common local descriptors include linear filters, local image patches, local binary

patterns, densely-extracted SIFT features, and many others. Since local descriptors

are extracted uniformly from the image, they can be seen as banks of (non-linear)

filters; we therefore refer to them as filter banks in honour of the pioneering work

of Leung and Malik, 2001 and others where descriptors were the output of actual

linear filters. Pooling methods include bag of visual words, variants using soft-

assignment, or extracting higher-order statistics as in the Fisher Vector. Since these

methods encode the information contained in the local descriptors in a single vector,

we refer to them as pooling encoders.

Section 4.1 and Section 4.2 discuss filter banks and pooling encoders in detail,

while in Section 4.2.4 we are proposing a hybrid architecture, that combines the

CNN features as local descriptors, but uses a standard encoder for pooling, in our

case, Fisher Vector, but could be any of the encoders described in Section 4.2.

4.1 Local Image Descriptors

There is a vast choice of local image descriptors in texture representations. Tra-

ditionally, these features were handcrafted, but with the latest generation of deep

learning methods it is now customary to learn them from data. These two families

of local features are discussed in Section 4.1.1 and Section 4.1.2, respectively.
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4.1.1 Hand-crafted Local Descriptors

Some of the earliest local image descriptors were developed as linear filter banks

in texture recognition. As an evolution of earlier texture filters Malik and Perona,

1990, the filter bank of Leung Malik (LM) [Leung and Malik, 2001] includes 48

filters matching bars, edges and spots, at various scales and orientations. These

filters are first and second derivatives of Gaussians at 6 orientations and 3 scales

(36), 8 Laplacian of Gaussian (LOG) filters, and 4 Gaussians. Combinations of the

filter responses, identified by vector quantization (Section 4.2.1), were used as the

computational basis of the “textons” proposed by Julesz [Julesz and Bergen, Jul-

Aug 1983]. The MR8 filter bank [Varma and Zisserman, 2003; Geusebroek et al.,

2003] consists instead of 38 filters, similar to LM. For two of the oriented filters,

only the maximum response across the scales is recorded, reducing the number of

responses to 8 (3 scales for two oriented filters, and two isotropic – Gaussian and

Laplacian of Gaussian).

The importance of using linear filters as local features was later questioned by

Varma and Zisserman [Varma and Zisserman, 2003]. The VZ descriptors are in fact

small image patches which, remarkably, were shown to outperform LM and MR8

on typical texture benchmarks such as CuRET that were popular at that time.

However, as will be demonstrated in the experiments, trivial local descriptors are

not competitive in harder tasks.

Another early local image descriptor is the Local Binary Patterns (LBP) [Ojala

et al., 1996; Ojala et al., 2002], a special case of the texture units of Wang and He,

1990. A LBP di = (b1, . . . , bm) computed at a pixel p0 is the sequence of bits

bj = [x(pi) > x(pj)] comparing the intensity x(pi) of the central pixel to the one of

m neighbours pj (usually 8 in a circle). LBPs have specialized quantization schemes;

the most common one maps the bit string di to one of a number of uniform pat-
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terns [Ojala et al., 2002]. The quantized LBPs can be averaged over the image to

build a histogram; alternatively, such histograms can be computed for small image

patches and used in turn as local image descriptors.

In the context of object recognition, the best known local descriptor is undoubt-

edly SIFT [Lowe, 1999]. SIFT is the histogram of the occurrences of image gradients

quantized with respect to their location within a patch and their orientation. While

SIFT was originally introduced to match object instances, it was later applied to

an impressive diversity of different tasks, from object categorization to semantic

segmentation and face recognition.

4.1.2 Learned Local Features

Hand-crafted image descriptors are nowadays outperformed by features learned us-

ing the latest generation of deep CNNs [Krizhevsky et al., 2012]. A CNN can be

seen as a composition φK ◦ · · · ◦ φ2 ◦ φ1 of K functions or layers. The output of

each layer xk = (φk ◦ · · · ◦ φ2 ◦ φ1)(x) is a descriptor field xk ∈ R
Wk×Hk×Dk , where

Wk and Hk are the width and height of the field and Dk is the number of feature

channels. By collecting the Dk responses at a certain spatial location, one obtains

a Dk dimensional descriptor vector. The network is called convolutional if all the

layers are implemented as (non-linear) filters, in the sense that they act locally and

uniformly on their input. If this is the case, since compositions of filters are filters,

the feature field xk is the result of applying a non-linear filter bank to the image x.

As computation progresses, the resolution of the descriptor fields decreases whereas

the number of feature channels increases. Often, the last several layers φk of a CNN

are called “fully connected” because, if seen as filters, their support is the same as

the size of the input field xk−1 and therefore lack locality. By contrast, earlier layers

that act locally will be referred to as “convolutional”. If there are C convolutional

layers, the CNN φ = φe ◦φf can be decomposed into a filter bank (local descriptors)
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φf = φC ◦ · · · ◦ φ1 followed by a pooling encoder φe = φK ◦ · · · ◦ φC+1.

4.2 Pooling Encoders

A pooling encoder takes as input the local descriptors extracted from an image

x and produces as output a single feature vector φ(x), suitable for tasks such as

classification with an SVM. A first important differentiating factor between encoders

is whether they discard the spatial configuration of input features (orderless pooling;

Section 4.2.1) or whether they reflect it (order-sensitive pooling; Section 4.2.2). A

detail of practical importance, furthermore, is the type of post-processing applied

to the pooled vector (Section 4.2.3).

4.2.1 Orderless Pooling Encoders

An orderless pooling encoder φe maps a collection F = (f1, . . . , fn), fi ∈ R
D of local

image descriptors to a feature vector φe(F) ∈ R
d. The encoder is orderless in the

sense that the function φe is invariant to permutation of the input F . 1 Furthermore,

the encoder can be applied to any number of features; for example, the encoder can

be applied to the subset F ′ ⊂ F of local descriptors that apply to a target image

region without recomputing the local descriptors themselves.

All common orderless encoders are obtained by applying a non-linear descriptor

encoder η(fi) ∈ R
d to individual local descriptors and then aggregating the result by

using a commutative operator such as average or max. For example, average-pooling

yields φ̄e(F) = 1
n

∑n

i=1 η(fi). The pooled vector φ̄e(F) is post-processed to obtain

the final representation φe(F) as discussed later.

The best-known orderless encoder is the Bag of Visual Words (BoVW). This

encoder starts by vector-quantizing (VQ) the local features fi ∈ R
D by assigning

them to their closest visual word in a dictionary C =

[

c1 . . . cK

]

∈ R
D×K of K

1Note that F cannot be represented as encoders are generally sensitive to feature repetitions.
Instead, φe is invariant to permutations of the sequence F .



4.2. POOLING ENCODERS 52

elements. Visual words can be thought of as “prototype features” and are obtained

during training by clustering example local features. The descriptor encoder η1(fi) is

the one-hot vector indicating the visual word corresponding to fi and average-pooling

these one-hot vectors yields the histogram of visual words occurrences. BoVW was

introduced by Sivic and Zisserman, 2003 and Csurka et al., 2004 respectively, for

object instance and category understanding, inspired from text retrieval. Earlier

work of Leung and Malik, 2001 also used histograms to characterise the distribution

of textons, defined as configuration of local filter responses, at each pixel. It was

then extended in several ways as described below.

The kernel codebook encoder [Philbin et al., 2008] assigns each local feature to

several visual words, weighted by a degree of membership: [ηKC(fi)]j ∝ exp (−λ‖fi − cj‖2),

where λ is a parameter controlling the locality of the assignment. The descriptor

code ηKC(fi) is L
1 normalised before aggregation, such that ‖ηKC(fi)‖1 = 1.

Sparse Coding [Olshausen and Field, 1997] was introduced first in neuro-

science, in the context of explaining the functionality of simple cells in visual cor-

tex of mammals. Later on, several algorithms for dictionary learning were devel-

oped [Mairal et al., 2008; Yang et al., 2010], with various applications, like image

reconstruction.

Locality constrained Linear Coding (LLC) [Wang et al., 2010] is one of sev-

eral methods which used sparse coding to define the local descriptor encoder [Zhou

et al., 2010; Liu et al., 2011]. It extends this idea of kernel codebook encoding,

by making the assignments reconstructive, local, and sparse: the descriptor encoder

ηLLC(fi) ∈ R
d
+, ‖ηLLC(fi)‖1 = 1, ‖ηLLC(fi)‖0 ≤ r is computed such that fi ≈ CηLLC(fi)

while allowing non-zero coefficients only to the r ≪ K visual words closest to fi.

In the Vector of Locally-Aggregated Descriptors (VLAD) [Jégou et al.,

2010] the descriptor encoder is richer. Local image descriptors are first assigned to

their nearest neighbor visual word in a dictionary of K elements like in BoVW; then
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the descriptor encoder is given by ηVLAD(fi) = (fi−Cη1(fi))⊗ η1(fi), where ⊗ is the

Kronecker product, and C denotes the nearest word in the codebook, obtained via

K-means. Intuitively, this subtracts from fi the corresponding visual word Cη1(fi)

and then copies the difference into one of K possible subvectors, one for each visual

word. Hence average-pooling ηVLAD(fi) accumulates first-order descriptor statistics

instead of simple occurrences as in BoVW.

VLAD can be seen as a variant of the Fisher Vector (FV) Perronnin and

Dance, 2007. The FV differs from VLAD as follows. First, the quantizer is not

K-means but a Gaussian Mixture Model (GMM) with components (πk, µk,Σk),

k = 1, . . . , K, where πk ∈ R is the prior probability of the component, µk ∈ R
D

the Gaussian mean and Σk ∈ R
D×D the Gaussian covariance (assumed diagonal).

Second, hard-assignments η1(fi) are replaced by soft-assignments ηGMM(fi) given

by the posterior probability of each GMM component. Third, the FV descriptor

encoder ηFV(fi) includes both first Σ
−

1

2

k (fi−µk) and second order Σ−1
k (fi−µk)⊙(fi−

µk)− 1 statistics, weighted by ηGMM(fi) (see Perronnin and Dance, 2007; Perronnin

et al., 2010; Chatfield et al., 2011 for details). Hence, average pooling ηFV(fi)

accumulates both first and second order statistics of the local image descriptors.

All the encoders discussed above use average pooling, except LLC that uses max

pooling.

4.2.2 Order-sensitive Pooling Encoders

An order-sensitive encoder differs from an orderless encoder in that the map φe(F)

is not invariant to permutation of the input F . Such an encoder can therefore reflect

the layout of the local image descriptors, which may be ineffective or even counter-

productive in texture recognition, but is usually helpful in the recognition of objects,

scenes, and others.

The most common order-sensitive encoder method is the Spatial Pyramid
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Pooling (SPP) of Lazebnik et al., 2006. SSP transforms any orderless encoder into

one with (weak) spatial sensitivity by dividing the image in subregions, computing

any encoder for each subregion, and stacking the results. This encoder is only

sensitive to reassignments of the local descriptors to different subregions.

The Fully-Connected layers (FC) in a CNN also form an order-sensitive en-

coder. Compared to the encoders seen above, FC are pre-trained discriminatively,

which can be either an advantage or disadvantage depending on whether the infor-

mation that they captured can be transferred to the domain of interest. FC poolers

are much less flexible than the encoders seen above as they work only with a partic-

ular type of local descriptors, namely the corresponding CNN convolutional layers.

Furthermore, a standard FC pooler can only operate on a well defined layout of

local descriptors (e.g. a 16 × 16 grid), which in turn means that the image needs

to be resized to a standard size before the FC encoder can be evaluated. This is

particularly expensive when, as in object detection or image segmentation, many

image subregions must be considered.

4.2.3 Post-processing

The vector y = φ̄e(F) obtained by pooling local image descriptors is usually post-

processed before being used in a classifier. In the simplest case, this amounts to

performing L2 normalisation φe(F) = y/‖y‖2. However, this is usually preceded by

a non-linear transformation φK(y) which is best understood in term of kernels. A

kernel K(y′,y′′) specifies a notion of similarity between data points y′ and y′′. If K

is a positive semidefinite function, then it can always be rewritten as the inner prod-

uct 〈φK(y
′), φK(y

′′)〉 where φK is a suitable pre-processing function called a kernel

embedding Maji et al., 2008; Vedaldi and Zisserman, 2010. Typical kernels include
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the linear, Hellinger’s, additive-χ2, and exponential-χ2 ones, given respectively by:

〈y′,y′′〉,
d

∑

i=1

√

y′iy
′′

i ,

d
∑

i=1

2y′iy
′′

i

y′i + y′′i
, exp

[

−λ
d

∑

i=1

(y′i − y′′i )
2

y′i + y′′i

]

.

In practice, the kernel embedding φK can be computed easily only in a few cases,

including the linear kernel (φK is the identity) and Hellinger’s kernel (for each

scalar component, φHell.(y) =
√
y). In the latter case, if y can take negative

values, then the embedding is extended to the so called signed square rooting2

φHell.(y) = sign(y)
√

|y|.

Even if φK is not explicitly computed, any kernel can be used to learn a classifier

such as an SVM (kernel trick). In this case, L2 normalising the kernel embedding

φK(y) amounts to normalising the kernel as

K ′(y,y′′) =
K(y′,y′′)

√

K(y′,y′)K(y′′,y′′)
.

All the pooling encoders discussed above are usually followed by post-processing.

In particular, the Improved Fisher Vector (IFV) Perronnin et al., 2010 prescribes the

use of the signed-square root embedding followed by L2 normalisation. VLAD has

several standard variants that differ in the post-processing; here we use the one that

L2 normalises the individual VLAD subvectors (one for each visual word) before L2

normalising the whole vector [Arandjelovic and Zisserman, 2012].

4.2.4 Hybrid representations - FV-CNN

We have seen in the previous sections a summary of the existing local descriptors

and encodings, whose combinations were widely used in the literature. The pipeline

2This extension generalises to all homogeneous kernel, including for example χ2 [Vedaldi and
Zisserman, 2010].
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Figure 4.1: FV-CNN, a hybrid image representation. The similarity be-
tween CNN and DESCRIPTOR-ENCODER pipelines (top) enables obtaining hy-
brid archidectures, by interchangning the building blocks. Following the upper path,
we obtain the standard Local descriptor-Pooling Encoder approach; the bottom part
gives the CNN pipeline; we highlighted in yellow FV-CNN, proposed in this the-
sis, which explores the alternate path. (bottom) The CNN architecture proposed
by Krizhevsky et al., 2012

is as follows: from an image, we extract local descriptors, using linear or non-linear

filters. Then, we pool the feature field in an order-less manner, using a suitable

encoder, like Bag of Visual Words, or Fisher Vector.

However, these days the most popular image representations are based on con-

volutional neural networks. We are interested to see how we could reuse elements

of classical texture representations in the context of deep learning. We note that a

CNN is also a sequence of operators, like in the standard pipeline. The first set of

operators (or layers), called convolutional, are local and translation invariant; the
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last operators, called instead fully connected, operate on the whole image. There-

fore, it is natural to think of the convolutional layers as local image descriptors,

similar to SIFT, and to see the fully connected layers as a pooling encoder. Al-

though, mathematically, convolutional and fully connected layers are essentially the

same, it is the information encoded by them, local or global, which makes our de-

composition natural. It is also important to note that the fully connected layers

provide order-sensitive statistics, which may be less useful for texture recognition,

especially for repetitive patterns.

Given this insight, the two pipelines are similar, and their blocks can be inter-

changed. This enables following the standard, CNN or local descriptors and encoder

pipelines, but also hybrid architectures, as shown in Figure 4.1. One such architec-

ture is FV-CNN, which uses CNN local descriptors, but replaces the pooling from

the fully connected layers, with a classical orderless encoder. As we will see in the

next chapter (Section 5.1.4 and 5.1.5), using Fisher Vector as encoder, and fea-

tures from the last convolutional layer as local descriptors, gives the best results

across several benchmarks from a wide range of domains: texture, material, object

recognition, scene understanding and even fine-grained categorization.

Besides the path explored in this thesis, there is one more possible way to inter-

change the blocks, that is, to use standard local features, such as SIFT, and fully

connected layers of a CNN acting as a pooling encoder [Perronnin and Larlus, 2015].



Chapter 5

Experiments on Semantic

Recognition

In the previous chapters, we introduced novel problems in texture understanding

and reviewed a number of old and new texture representations. The goal of this

chapter is to determine, through extensive experiments, what representations work

best for which problem.

Representations are labelled as pairs ENCODER-DESCRIPTOR. For example,

FV-SIFT denotes the Fisher vector encoder applied to densely extracted SIFT de-

scriptors, whereas BoVW-CNN denotes the bag-of-visual-words encoder applied on

top of CNN convolutional descriptors. Note in particular that the CNN-based image

representations as commonly extracted in the literature [Jia, 2013; Razavin et al.,

2014; Chatfield et al., 2014] implicitly use CNN-based descriptors and the FC pooler,

and therefore are denoted here as FC-CNN.

The first set of experiments (Section 5.1) evaluates several local image descrip-

tors and pooling encoder combinations on a small number of datasets in order to

determine noteworthy representations. The second set of experiments (Section 5.2)

evaluates the latter on a wide range of image recognition benchmarks in order to

58
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establish their relative merits and breadth of applicability. We focus primarily on

textures and materials (Section 5.2.1), but also evaluate the proposed method on

coarse and fine-grained object categorization, semantic region recognition, and scene

categorization (Section 5.2.2), and show the benefits of our method in domain trans-

fer (Section 5.2.3).

5.1 Local Image Descriptors and Encoders Eval-

uation

This section compares different local image descriptors and pooling encoders (Sec-

tion 5.1.1) on selected representative tasks in texture recognition, object recognition,

and scene recognition (Section 5.1.2). In particular, Section 5.1.3 compares different

local descriptors, Section 5.1.4 different pooling encoders, and Section 5.1.5 addi-

tional variants of the CNN-based descriptors.

5.1.1 General Experimental Setup

The experiments are centred around two types of local descriptors. The first type

are SIFT descriptors extracted densely from the image (denoted DSIFT ). SIFT

descriptors are sampled with a step of two pixels and the support of the descriptor

is scaled such that a SIFT spatial bin has size 8 × 8 pixels. Since there are 4 × 4

spatial bins, the support or “receptive field” of each DSIFT descriptor is 40 × 40

pixels, (including a border of half a bin due to bilinear interpolation). Descriptors

are 128-dimensional [Lowe, 1999], but their dimensionality is further reduced to 80

using PCA, in all experiments. Besides improving the classification accuracy, this

significantly reduces the size of the Fisher Vector and VLAD encodings.

The second type of local image descriptors are deep convolutional features (de-

noted CNN ) extracted from the convolutional layers of CNNs pre-trained on Ima-

geNet ILSVRC data. Most experiments build on the VGG-M model of Chatfield et
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al., 2014 as this network performs better than standard networks such as Caffe [Jia,

2013] and AlexNet [Krizhevsky et al., 2012] while having a similar computational

cost. The VGG-M convolutional features are extracted as the output of the last con-

volutional layer, directly from the linear filters excluding ReLU and max pooling,

which yields a field of 512-dimensional descriptor vectors. In addition to VGG-M,

experiments consider the recent VGG-VD (very deep with 19 layers) model of Si-

monyan and Zisserman, 2014. The receptive field of CNN descriptors is much larger

compared to SIFT: 139× 139 pixels for VGG-M and 252× 252 for VGG-VD.

When combined with a pooling encoder, local descriptors are extracted at multi-

ple scales, obtained by rescaling the image by factors 2s, s = −3,−2.5, . . . , 1.5 (but,

for efficiency, discarding scales that would make the image larger than 10242 pixels).

The dimensionality of the final representation strongly depends on the encoder

type and parameters. For K visual words, BoVW and LLC have K dimensions,

VLAD has KD and FV 2KD, where D is the dimension of the local descriptors.

For the FC encoder, the dimensionality is fixed by the CNN architecture; here the

representation is extracted from the penultimate FC layer (before the final classifi-

cation layer) of the CNNs and happens to have 4096 dimensions for all the CNNs

considered. In practice, dimensions vary widely, with BoVW, LLC, and FC having

a comparable dimensionality, and VLAD and FV a much higher one. For example,

FV-CNN has 64K dimensions with K = 64 Gaussian mixture components, versus

the 4096 of FC, BoVW, and LLC (when used with K = 4096 visual words). In

practice, however, dimensions are hardly comparable as VLAD and FV vectors are

usually highly compressible [Parkhi et al., 2014]. We verified that by PCA-reducing

FV to 4096 dimensions and observing only a marginal reduction in classification

performance in the PASCAL VOC object recognition task described below.

Unless otherwise specified, learning uses a standard non-linear SVM solver. Ini-

tially, cross-validation was used to select the parameter C of the SVM in the range
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{0.1, 1, 10, 100}; however, after noting that performance was nearly identical in this

range (probably due to the data normalisation), C was simply set to the constant

1. Instead, it was found that recalibrating the SVM scores for each class improve

classification accuracy (but not mAP). We recalibrated the scores by changing the

SVM bias and rescaling the SVM weight vector in such a way that the median scores

of the negative and positive training samples for each class are mapped respectively

to the values −1 and 1.

All the experiments in this thesis use the VLFeat library [Vedaldi and B. Fulker-

son, 2008] for the computation of SIFT features and the pooling embeddings (BoVW,

VLAD, FV). The MatConvNet [Vedaldi and Lenc, 2014] library is used instead for

all the experiments involving CNNs. Further details specific to the setup of each

experiment are given below as needed.

5.1.2 Datasets and Evaluation Measures

The evaluation is performed on a diversity of tasks: the new describable attribute

and material recognition benchmarks in DTD and Open Surfaces, existing ones in

FMD and KTH-T2b, object recognition in PASCAL VOC 2007, and scene recogni-

tion in MIT Indoor. All experiments follow standard evaluation protocols for each

dataset, as detailed below.

DTD (Section 3.1) contains 47 texture classes, one per visual attribute, contain-

ing 120 images each. Images are equally spilt into train, test and validation. The

evaluation focuses on recognizing the “key attributes”, as defined in Section 3.1.5

and reports accuracy averaged over the 10 default splits provided with the datasets.

As shown later, in Table 5.4, recognizing the “joint attributes” gives similar results

to recognizing the “key attributes”.

Open Surfaces [Bell et al., 2013] is used in the setup described in Section 3.2.1

and contains 25,357 images, out of which we selected 10,422 images, spanning across
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21 categories. When segments are provided, the dataset is referred to as OS+R, and

recognition accuracy is reported on a per-segment basis. We also annotated the seg-

ments with the attributes from DTD, and called this subset OSA (and OSA+R for

the setup when segments are provided). For the recognition task on OSA+R we are

reporting mean average precision, as this is a multi-label dataset. FMD [Sharan

et al., 2009] consists of 1000 images with 100 for each of ten material categories. The

standard evaluation protocol of Sharan et al., 2009 uses 50 images per class for train-

ing and the remaining 50 for testing, and reports classification accuracy averaged

over 14 splits. KTH-T2b [Mallikarjuna et al., 2005] contains 4752 images, grouped

into 11 material categories. For each material category, images of four samples were

captured under various conditions, resulting 108 images per sample. Following the

standard procedure [Caputo et al., 2005; Timofte and Van Gool, 2012], images of

one material sample are used to train the model, and the other three samples for

evaluating it, resulting in four possible splits of the data, for which average per-class

classification accuracy is reported. MIT Indoor Scenes [Quattoni and Torralba,

2009] contains 6700 images divided in 67 scene categories. There is one split of the

data into train (80%) and test (20%), provided with the dataset, and the evaluation

metric is average per-class classification accuracy. PASCAL VOC 2007 [Ever-

ingham et al., 2007] contains 9963 images split across 20 object categories. The

dataset provide a standard split in training, validation and test data. Performance

is reported in term of mean average precision (mAP) computed using the TRECVID

11-point interpolation scheme Everingham et al., 2007.1

5.1.3 Local Image Descriptors and Kernels Comparison

The goal of this section is to establish which local image descriptors work best in a

texture representation. The question is relevant because: (i) while SIFT is the de-

1The definition of AP was changed in later versions of the benchmark.
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Local Descriptor Kernel
descriptor dimensionality Linear Hellinger add-χ2 exp-χ2

MR8 8 20.8 ± 0.9 26.2 ± 0.8 29.7 ± 0.9 34.3 ± 1.1
LM 49 26.7 ± 0.9 34.8 ± 1.2 39.5 ± 1.4 44.0 ± 1.4
Patch3×3 9 15.9 ± 0.5 24.4 ± 0.7 27.8 ± 0.8 30.9 ± 0.7
Patch7×7 49 20.7 ± 0.8 30.6 ± 1.0 34.8 ± 1.0 37.9 ± 0.9
LBPu 581 8.5 ± 0.4 9.3 ± 0.5 12.5 ± 0.4 19.4 ± 0.7
LBP-VQ 581 26.2 ± 0.8 28.8 ± 0.9 32.7 ± 1.0 36.1 ± 1.3
SIFT 802 45.2 ± 1.0 49.1 ± 1.1 50.9 ± 1.0 52.3 ± 1.2

Conv VGG-M 512 55.9 ± 1.3 61.7 ± 0.9 61.9 ± 1.0 61.2 ± 1.0

Conv VGG-VD 512 64.1 ± 1.3 68.8 ± 1.3 69.0 ± 0.9 68.8 ± 0.9

Table 5.1: Comparison of local features and kernels on the DTD data. The table
reports classification accuracy, averaged over the predefined ten splits, provided with
the dataset. We marked in bold the best performing descriptors, SIFT and convo-
lutional features, which we will cover in the following experiments and discussions.
1 VLFeat implementation is 58D, 2 SIFT is reduced from 128D to 80D via PCA.

facto standard handcrafted-feature in object and scene recognition, most authors use

specialized descriptors for texture recognition and (ii) learned convolutional features

in CNNs have not yet been compared when used as local descriptors (instead, they

have been compared to classical image representations when used in combination

with their FC layers).

The experiments are carried on the task of recognizing describable texture at-

tributes in DTD (Section 3.1 using the BoVW encoder. As a byproduct, the ex-

periments determine the relative difficulty of recognizing the different 47 perceptual

attributes in DTD.

Experimental setup. The following local image descriptors are compared: the

linear filter banks of Leung and Malik (LM) (48D descriptors) [Leung and Malik,

2001] and MR8 (8D descriptors) [Geusebroek et al., 2003; Varma and Zisserman,

2005], the 3 × 3 and 7 × 7 raw image patches of Varma and Zisserman, 2003 (re-

spectively 9D and 49D), the local binary patterns (LBP) of Ojala et al., 2002 (58D),

DSFIT (128D), and CNN features extracted from VGG-M and VGG-VD (512D).
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After the BoVW representation is extracted, it is used to train a 1-vs-all SVM

using the different kernels discussed in Section 4.2.3: linear, Hellinger, additive-χ2,

and exponential-χ2. Kernels are normalised as described before. The exponential-χ2

kernel requires choosing the parameter λ; this is set as the reciprocal of the mean

of the χ2 distance matrix of the training BoVW vectors. Before computing the

exponential-χ2 kernel BoVW vectors are L1 normalised. An important parameter

in BoVW is the number of visual words selected. K was varied in the range 256,

512, 1024, 2048, 4096 and performance evaluated on a validation set. Regardless

of the local feature and embedding, performance was found to increase with K and

to saturate around K = 4096 (although the relative benefit of increasing K was

larger for features such as SIFT and CNNs). Therefore K was set to this value in

all experiments.

Analysis. Table 5.1 reports the classification accuracy for 47 1-vs-all SVM at-

tribute classifiers, computed as in Section 3.1. As often found in the literature,

the best kernel was found to be exponential-χ2, followed by additive-χ2, Hellinger’s,

and linear kernels. Among the hand-crafted descriptors, dense SIFT significantly

outperforms the best specialized texture descriptor on the DTD data (52.3% for

BoVW-exp-χ2-SIFT vs 44% for BoVW-exp-χ2-LM). CNN local descriptors outper-

form handcrafted features by a 10-15% recognition accuracy margin. It is also

interesting to note that the choice of kernel function has a much stronger effect for

image patches and linear filters (e.g. accuracy nearly doubles moving from BoVW-

linear-patches to BoVW-exp-χ2-patches) and an almost negligible effect for the much

stronger CNN features.

Figure 5.1 reports the classification accuracy for each attribute in DTD for the

BoVW-SIFT, -VGG-M, and -VGG-VD descriptors and the additive-χ2 kernel. As it

may be expected, concepts such as chequered, waffled, knitted, paisley achieve nearly

perfect classification, while others such as blotchy, smeared or stained are far harder.
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Image
Feature

SIFT VGG-M VGG-VD
grid, lacelike,
meshed, waffled,
fibrous, porous,
flecked, zigzagged,
lined, bumpy

fibrous, grid,
flecked, meshed,
marbled, blotchy,
bubbly, porous,
matted, pitted,

meshed, fibrous,
flecked, marbled,
pitted, grooved,
woven, dotted,
polka-dotted, lined

grid, interlaced,
chequered, woven,
marbled, flecked,
polka-dotted,
porous, swirly,
grooved

chequered, blotchy,
woven, sprinkled,
knitted, lined,
wrinkled,
polka-dotted,
scaly,
honeycombed

blotchy, stained,
perforated, porous,
pitted, sprinkled,
crosshatched,
honeycombed,
chequered,
polka-dotted

fibrous, matted,
stratified, porous,
paisley, frilly,
gauzy, freckled,
smeared,
interlaced

marbled, gauzy,
stained,
crystalline,
fibrous, scaly,
paisley, bumpy,
bubbly, pitted

marbled, smeared,
matted, fibrous,
braided, swirly,
cobwebbed,
crystalline,
wrinkled,
honeycombed

lined, grooved,
flecked, stratified,
pleated, gauzy,
dotted, knitted,
marbled,
polka-dotted

lined, marbled,
grooved, flecked,
bumpy, blotchy,
knitted,
crosshatched,
matted, braided

grooved, lined,
pleated,
crosshatched,
woven, pitted,
sprinkled, bumpy,
matted, marbled

crystalline, frilly,
gauzy, bumpy,
cracked, studded,
honeycombed,
scaly, braided,
veined

crystalline, bumpy,
potholed, studded,
braided,
crosshatched,
wrinkled, veined,
cracked, scaly

wrinkled,
crystalline,
stained, bumpy,
smeared,
crosshatched,
studded, gauzy,
potholed, braided

banded, porous,
pleated, flecked,
cobwebbed,
marbled,
interlaced,
perforated,
spiralled, knitted

pleated, banded,
lined, interlaced,
braided, striped,
meshed, flecked,
matted, knitted

lined, banded,
pitted,
crosshatched,
marbled, matted,
polka-dotted,
woven, braided,
meshed

Table 5.2: SIFT vs CNN local descriptors. Examples of images for which SIFT
outperforms CNN local features. In bold, we marked the ground-truth label, and in
italic, reasonable predictions.
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While on average, convolutional features significantly outperform SIFT, and the

CNN features from a deeper model give a further 10% improvement, there are some

cases in which, surprisingly, SIFT is performing better: grid, lined, polka-dotted,

crystalline, and some cases in which the features from VGG-M are outperforming

VGG-VD features: banded, pleated, polka-dotted, studded. It is important to note

that the number of images in the test set is relatively small (40 per class), and a 15%

difference in per-class accuracy, as in the case of grid, means 6 images which were

not classified correctly using CNN features, and were correctly classified using SIFT.

Looking closely at these images, we note that the CNN features give reasonable

top guesses – e.g. suggesting terms like meshed for an image labelled as grid, or

chequered, blotchy, stained in the case of the second image in Table 5.2, reflecting

details in the image: chequered background, stained metal forming the grid. The

top guesses from convolutional features are either classes with similar aspect (grid

vs meshed, lined vs banded), or describe some details in the appearance of the

image. Another interesting example is the crystalline image, recognized as wrinkled

– similar in appearance and colour with aluminium foil, present in the examples for

wrinkled class.

Although for certain classes there are a few images which are classified correctly

for SIFT features, for the majority of classes, CNN features perform better, and the

gap is wider (e.g. for pleated, VGG-M features are better by 35% absolute accuracy

than the SIFT counterpart).

Conclusions. The conclusions are that (i) SIFT descriptors outperform signifi-

cantly texture-specific descriptors such as linear filter banks, patches, and LBP on

this texture recognition task, and that (ii) learned convolutional local descriptors

significantly surpass SIFT.
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5.1.4 Pooling Encoders

The previous section established the primacy of SIFT and CNN local image de-

scriptors on alternatives. The goal of this section is to determine which pooling

encoders (Section 4.2) work best with these descriptors, comparing the orderless

BoVW, LLC, VLAD, FV encoders and the order-sensitive FC encoder. The latter,

in particular, reproduces the CNN transfer learning setting commonly found in the

literature where CNN features are extracted in correspondence of the FC layers of

a network.

Experimental setup. The experimental setup is similar to the previous exper-

iment: the same SIFT and CNN VGG-M descriptors are used; BoVW is used in

combination with the Hellinger’s kernel (the exponential variant is slightly better,

but much more expensive); the same K = 4096 codebook size is used with LLC.

VLAD and FV use a much smaller codebook as these representation multiply the

dimensionality of the descriptors (Section5.1.1). Since SIFT and CNN features are

respectively 128 and 512-dimensional, K is set to 256 and 64 respectively. The

impact of varying the number of visual words in the FV representation is further

analysed in Section 5.1.5.

Before pooling local descriptor with a FV, these are usually de-correlated by

using PCA whitening. Here PCA is applied to SIFT, additionally reducing its di-

mension to 80, as this was empirically shown to improve recognition performance.

However, PCA is not applied to the convolutional features as it was shown to dete-

riorate performance in this case. The improved version of the FV is used in all the

experiments in this chapter, and, similarly, for VLAD, we applied signed square root

to the resulting encoding, which is then normalised component-wise (Section 4.2.3).
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Analysis. Results are reported in Table 5.3. In term of orderless encoders, BoVW

and LLC result in similar performance for SIFT, while the difference is slightly larger

and in favour of LLC for CNN features. Note that BoVW is used with Hellinger

kernel, which contributes to reducing the gap between BoVW and LLC. IFV and

VLAD significantly outperform BoVW and LLC in almost all tasks; FV is definitely

better than VLAD with SIFT features and about the same with CNN features.

CNN features maintain a healthy lead on SIFT features regardless of the encoder

used.

Importantly, VLAD and FV (and to some extent BoVW and LLC) perform

either substantially better or as well as the original FC encoders. Some of these

observations can be confirmed in other experiments such as Table 5.4.

Next, we compare using CNN features with an orderless encoder (FV-CNN) as

opposed to the standard FC layer (FC-CNN). As seen in Table 5.3 and Table 5.4,

in PASCAL VOC and MIT Indoor the FC-CNN descriptor performs very well but

in line with previous results for this class of methods [Chatfield et al., 2014]. FV-

CNN performs similarly to FC-CNN in PASCAL VOC, KTH-T2b and FMD, but

substantially better for DTD, OS+R, and MIT Indoor (e.g. for the latter +5% for

VGG-M and +13% for VGG-VD).

As a sanity check, results are within 1% of the ones reported in Chatfield et al.,

2011 and Chatfield et al., 2014 for matching experiments on FV-SIFT and FC-VGG-

M. The differences in case of SIFT LLC and BoVW is easily explained by the fact

that, differently from Chatfield et al., 2011, these experiments do not use SPP and

image augmentation.

Conclusions. The conclusions of these experiments are that: (i) IFV and VLAD

are preferable to other orderless pooling encoders, that (ii) orderless pooling encoders

such as the FV are at least as good and often significantly better than FC pooling

with CNN features.
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5.1.5 CNN Descriptor Variants Comparison

This section conducts additional experiments on CNN local descriptors to find the

best variants – from comparing network architectures, to varying depths at which

features are extracted, and encoder parameters.

Experimental setup. The same setup of the previous section is used. FC-CNN

and FV-CNN local descriptors obtained from VGG-M, VGG-VD as well as the

simpler AlexNet CNN [Krizhevsky et al., 2012], which is widely adopted in the

literature.

Analysis. Results are presented in detail in Table 5.4, with an emphasis on tex-

ture and material datasets (a, b and c), but conclusions are similar for the other

datasets (d). In general, VGG-M is better than AlexNet and VGG-VD is substan-

tially better than VGG-M (e.g. on FMD, FC-AlexNet obtains 64.8%, FC-VGG-M

obtains 70.3% (+5.5%), FC-VGG-VD obtains 77.4% (+7.1%)). However, switching

from FC to FV pooling improves the performance more than switching to a better

CNN (e.g. on DTD going from FC-VGG-M to FC-VGG-VD is a 7.1% improvement,

while going from FC-VGG-M to FV-VGG-VD is a 11.3% improvement). Combining

FV-CNN and FC-CNN (by concatenating the corresponding image representations)

improves the accuracy by 1-2% for VGG-VD, and up to 3-5% for VGG-M. There is

no significant benefit from adding FV-SIFT as well, as the improvement is at most

1%, and in some cases (MIT, FMD) it degrades the performance.

Next, we analyse in detail the effect of depth on the convolutional features.

Figure 5.3 reports the accuracy of VGG-M and VGG-VD on several datasets for

features extracted at increasing depths. The pooling method is fixed to FV and

the number of Gaussian centres K is set such that the overall dimensionality of the

descriptor 2KDk is constant.
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Figure 5.2: Effect of the number of Gaussian components in the FV en-
coder. The figure shows the performance of the FV-VGG-M and FV-VGG-VD
representations on the OS and DTD datasets when the number of Gaussians com-
ponents in the GMM is varied from 1 to 128.in the GMM, from 1 to 128. Note that
abscissa is scaled logarithmically.

For both VGG-M and VGG-VD, the improvement with increasing depth is sub-

stantial and the best performance is obtained by the deepest features (up to 32%

absolute accuracy improvement in VGG-M and up to 48% in VGG-VD). Perfor-

mance increases at a faster rate up to the third convolutional layer (conv3) and

then the rate tapers off somewhat. The performance of the earlier levels in VGG-

VD is much worse than the corresponding layers in VGG-M. In fact, the performance

of VGG-VD matches the performance of the deepest (fifth) layer in VGG-M in cor-

respondence of conv5 1, which has depth 13.
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Finally, we look at the effect of the number of Gaussian components (visual

words) in the FV-CNN representation, testing possible values in the range 1 to 128

in small (1-16) increments. Results are presented in Figure 5.2. While there is a

substantial improvement in moving from one Gaussian component to about 64 (up

to +15% on DTD and up to 6% on OS), there is little if any advantage at increasing

the number of components further.

Conclusions. The conclusions of these experiments are as follows: (i) deeper

models substantially improve performance; (ii) switching from FC to FV pooling

has an ever more substantial impact, particularly for deeper models; (iii) combining

FC and FV pooling has a modest benefit and there is no benefit in integrating SIFT

features; (iv) in very deep models, most of the performance gain is realised in the

very last few layers.

5.2 Evaluating Texture Representations on Dif-

ferent Domains

The previous section established optimal combinations of local image descriptors

and pooling encoders in texture representations. This section investigates the appli-

cability of these representations to a variety of domains, from texture (Section 5.2.1)

to object and scene recognition (Section 5.2.3). It also emphasises several practical

advantages of orderless pooling compared to fully-connected pooling, including help-

ing with the problem of domain shift in learned descriptors. This section focuses on

problems where the goal is to either classify an image as a whole or a known region

of an image, while texture segmentation is looked at later in Section 6.2.

5.2.1 Texture Recognition

We are grouping the experiments on textures in this section, by the conditions in

which the images were collected, and by the area covered by the texture, as follows:
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recognition in controlled conditions, where the main variables are viewpoint and

illumination, recognition in the wild, characterised by larger intra-class variations,

and recognition in the wild and clutter, where textures are a small portion of a larger

scene.

Datasets and evaluation measures. In addition to the texture datasets eval-

uated in Section 5.1, DTD, OS+R, FMD and KTH-T2b, we consider here also the

standard benchmarks for texture recognition. CUReT [Dana et al., 1999] (5612

images, 61 classes), UIUC [Lazebnik et al., 2005] (1000 images, 25 classes), KTH-

TIPS [Burghouts and Geusebroek, 2009] (810 images, 10 classes) are collected in

controlled conditions, by photographing the same instance of a material, under

varying scale, viewing angle and illumination. UMD [Xu et al., 2009] consists of

1000 images, spread across 25 classes, but it was collected in uncontrolled condi-

tions. For these datasets, we follow the standard evaluation procedures, that is, we

are using half of the images for training, and the remaining half for testing, and we

are reporting accuracy, averaged over 10 random splits. ALOT dataset [Burghouts

and Geusebroek, 2009] is similar to the existing texture datasets, but significantly

larger, having 250 categories. For our experiments we used the protocol of Sulc and

Matas, 2014, using 20 images per class for training and the rest for testing.

Experimental setup. For the recognition tasks described in the following sub-

sections, we compare SIFT, VGG-M, and VGG-VD local descriptors and the FC

and FV pooling encoders as these were determined before to be some of the best

representative texture descriptors. Combination of such descriptors are evaluated

as well.

Texture recognition in controlled conditions. The results for texture repre-

sentations on datasets which are collected under controlled conditions are shown in

section (a) of Table 5.4.
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For instance recognition, CUReT, UIMD, UIUC are saturated by modern tech-

niques such as [Sifre and Mallat, 2013; Sharma et al., 2012; Sulc and Matas, 2014],

with accuracies above ≥ 99%. There is little difference between methods, and FV-

SIFT, FV-CNN, and FC-CNN behave similarly. KT is also saturated, although

FC-CNN loses about (3%) accuracy compared to FV-CNN.

In material recognition, KTH-T2b and ALOT are more challenging compared

to the other benchmarks, KTH-T2b exposing intra-class variation, as opposed to

classifying texture instances, and ALOT having a large number of classes – 250.

First, there is a significant gap between FC-CNN and FV-CNN (3-6% absolute

difference in KTH-T2b and 8-10% in ALOT), consistent across all CNN evaluated.

Second, CNN descriptors are significantly better than SIFT on KTH-T2b and ALOT

with absolute accuracy gains of up to 11%.

Compared to the state of the art, FV-SIFT is generally very competitive. In

KTH-T2b, FV-SIFT outperforms all recent methods( [Timofte and Van Gool, 2012])

with the exception of Sulc and Matas, 2014 which is based on a variant of LBP. The

latter is very strong in ALOT too, but in this case FV-SIFT is virtually as good.

In the case of KTH-T2b, Sulc and Matas, 2014 is better than most of the deep

descriptors as well, but it is still behind FV-VGG-VD by +5.5%. Nevertheless, this

is an example in which a specialized texture descriptor can be competitive with

deep features, although of course deep features apply unchanged to several other

problems.

On ALOT, FV-CNN with VGG-VD is on par with the result obtained by Badri

et al., 2014 – 98.45% – but their model was trained with 30 images per class instead

of 20. The same paper reports even better results, but when training with 50 images

per class or by integrating additional synthetic training data.

Texture recognition in the wild. This paragraph evaluates the texture repre-

sentations on two texture datasets collected “in the wild”: FMD (materials) and



5.2. EVALUATING TEXTURE REPRESENTATIONS ON
DIFFERENT DOMAINS 78

DTD (describable attributes).

Texture recognition in the wild is more comparable, in term of the type of intra-

class variations, to object recognition than to texture recognition in controlled condi-

tions. Hence, one can expect larger gains in moving from texture-specific descriptors

to general-purpose descriptors. This is confirmed by the results. SIFT is compet-

itive with AlexNet and VGG-M features in FMD (within 3% accuracy), but it is

significantly worse in DTD (+4.3% for FV-AlexNet and +8.2% for FV-VGG-M).

FV-CNN is a little better than FC-CNN (∼3%) on FMD and substantially better in

DTD (∼8%). Different CNN architectures exhibit very different performance; mov-

ing from AlexNet to VGG-VD, the accuracy absolute improvement is more than

11% across the board.

Compared to the state of the art, FV-SIFT is generally very competitive, outper-

forming the specialized texture descriptors developed by Qi et al., 2014 and Sharan

et al., 2013 in FMD (and this without using ground-truth texture segmentations as

used by Sharan et al., 2013). Yet FV-VGG-VD is significantly better than all these

descriptors (+24.7%).

Concatenating FC-CNN and FV-CNN improves performance by about 3% across

the board, showing that these features are somewhat complementary, but including

FV-SIFT (labelled FV-SIFT/FC+FV-VD in the table) as well does not seem to

improve performance further. This is in contrast with our previous finding that

SIFT was fairly complementary to FC-CNN on a variant of AlexNet in Cimpoi et

al., 2014.

Texture recognition in clutter. In what follows, we evaluate texture represen-

tations on recognizing texture materials and describable attributes in clutter. Since

there is no standard benchmark for this setting, we introduce here the first analysis

of this kind using the the OS+R and OSA+R datasets of Section 3.2.1. Recall that

the +R suffix indicates that, while textures are imaged in clutter, the classifier is
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Finding 6) FV pooling ≫ CNN pooling for small, variable regions
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Figure 5.4: Image recognition vs region recognition. The advantage of using
FV pooling instead CNN pooling becomes clear when the task is to classify regions
of variable shapes and sizes. On the left, we show benchmarks for which the task
is to classify the whole image, and on the right we show results for benchmarks in
which the task is to classify image regions. We used the “+R” mark to indicate
that regions to be classified are given. Note that on the right, the gap between
FC-pooling and FV-pooling is bigger than on the left.

given the ground-truth region segmentation; therefore, the goal of this experiment

is to evaluate the effect of realistic viewing conditions on texture recognition, but

the problem of segmenting the textures is evaluated later, in Section 6.2.

Results are reported in Table 5.4 in sections b and c. As before, performance

improves with the depth of CNNs. For example, in material recognition (OS+R) ac-

curacy starts at about 39.1% for FV-SIFT, is about the same for FC-VGG-M (41.3%)

and a little better for FC-VGG-VD (43.4%). However, the benefit of switching from

FC encoding to FV encoding is now even more dramatic. For example, on OS+R

FV-VGG-M has accuracy 52.5% (+11.2%) while FV-VGG-VD 59.5% (+16.1%).

The advantage of orderless pooling of CNN local descriptors over FC pooling, when

region of different sizes and shapes must be evaluated becomes is clear, when we

compare the gap with results on benchmarks that require image classification as a
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whole. These are visualized in Figure 5.4 – the gap is much smaller on the left, for

the whole image recognition tasks, and visibly larger on the right, where we evaluate

classification of regions of variable shape and size.

The significant computational advantage (evaluated further in Section 5.2.3) be-

comes obvious when several regions must be classified, as FV-pooled CNN features

need not to be recomputed for each region, being shared across regions. Results on

OSA+R are entirely analogous.

5.2.2 Object and scene recognition

This section evaluates texture descriptors on tasks other than texture recognition,

namely coarse and fine-grained object categorization, scene recognition, and seman-

tic region recognition.

Datasets and evaluation measures. In addition to the datasets seen before,

here we experiment with fine grained recognition in the CUB data [Wah et al., 2011].

This dataset contains 11788 images, representing 200 species of birds. The images

are split approximately into half for training and half for testing, according to the list

that accompanies the dataset. Image representations are either applied to the whole

image (denoted CUB) or on the region counting the target bird using ground-truth

bounding boxes (CUB+R). Performance in CUB and CUB+R is reported as per-

image classification accuracy. For this dataset, the local descriptors are extracted

at multiple scales, but for the smaller range {0.5, 0.75, 1} which was found to work

better for this task.

Performance is also evaluated on the MSRC dataset, designed to benchmark

semantic segmentation algorithms. The dataset contains 591 images, for which some

pixels are labelled with one of the 23 classes. In order to be consistent with the results

reported in the literature, performance is reported in term of per-pixel classification

accuracy, similar to the measure used for the OS task as defined in Section 3.2.1.
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However, this measure is further modified such that it is not normalised per class:

acc-msrc(ĉ) =
|{p : c(p) = ĉ(p)}|
|{p : c(p) 6= 0}| .

Analysis. Results are reported in Table 5.4 section d. On PASCAL VOC, MIT

Indoor, CUB, and CUB+R the relative performance of the different descriptors

is similar to what observed above for textures. Compared to the state-of-the-art

results in each dataset, FC-CNN and particularly the FV-CNN descriptors are very

competitive. The best result obtained in PASCAL VOC is comparable to the current

state-of-the-art set by the deep learning method of Wei et al., 2014 (85.2% vs 84.9%

mAP), but using a simpler and more general pipeline. In MIT Places the best

performance is also substantially superior (+10%) to the current state-of-the-art

using deep convolutional networks learned on the MIT Place dataset Zhou et al.,

2014 (this is discussed further below). In the CUB dataset, the best performance is

short (∼ 6%) of the state-of-the-art results of Zhang et al., 2014. However, Zhang

et al., 2014 uses a category-specific part detector and corresponding part descriptor

as well as a CNN fine-tuned on the CUB data; by contrast, FV-CNN and FC-CNN

are used here as global image descriptor which, furthermore, are the same for all

the datasets considered. Compared to the results of Zhang et al., 2014 without

part-based descriptors (but still using a part-based object detector), the best of our

global image descriptors perform substantially better (62.1% vs 67.3%).

Results on MSRC+R for semantic segmentation are entirely analogous; it is

worth noting that, although ground-truth segments are used in this experiment and

hence this number is not comparable with other reported in the literature, the best

model achieves an outstanding 99.1% per-pixel classification rate in this dataset.

Conclusions. The conclusion of this section is that FV-CNN, although inspired by

texture representations, are superior to many alternative descriptors in object and
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scene recognition, including more elaborate constructions. Furthermore, FV-CNN

is significantly superior to FC-CNN in this case as well.

5.2.3 Domain transfer

This section investigates in more detail the problem of domain transfer in CNN-

based features. CNNs require large amounts of data for training, which, for many

target domains, is not available. To compensate the lack of training data, a model

is pretrained on a large dataset, like Imagenet ILSVCR, and the resulting net –

after cutting the last layer, is used to extract features. These features are then used

to predict classes on the target dataset. We will call this approach late transfer,

because we cut deep down in the network, in the area of the fully connected layers.

Using Fisher Vector for pooling local descriptors allows us to cut after the con-

volutional layers, and use their outputs as local features, then, use the resulting

feature vectors to predict classes on a target domain. We will refer to this approach

as early transfer, because we cut the network earlier, in the region of convolutional

layers. Figure 5.5 illustrates the difference between the two types of transfer – the

red arrow denotes the late transfer, and the blue arrow marks the early transfer.

To investigate the effect of the source domain on performance, we consider, in

addition to the networks used so far, which are pretrained on ImageNet data, a

new network, having the same architecture as AlexNet, but trained on PLACES

dataset [Zhou et al., 2014], which consists of about 2.5 million labelled images of

scenes. Zhou et al., 2014 showed that, applied to the task of scene recognition in

MIT Indoor, these features outperform AlexNet [Krizhevsky et al., 2012] – a fact

explained by the similarity of domains. We repeat this experiment using FC- and

FV-CNN descriptors on top of VGG-M, VGG-VDs.

Results are shown in Table 5.5. The FC-CNN performance is in line with those

reported in Zhou et al., 2014 – in scene recognition with FC-CNN the same CNN
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c1 c2 c3 c4 c5 f6 f7 f8
source

data

(ImageNet)

predictor
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pooling
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(Fully-connected CNN)

Early transfer

(Fisher vector CNN)
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Figure 5.5: Late vs. early transfer. In red, we marked the standard, late transfer,
that is, using fc7 as features for images from the target domain. The blue arrow
denotes the early transfer path, that is, cutting after a convolutional layer, and
replacing the convolutional layers with a pooling encoder.

architecture performs better if trained on the Places dataset instead of the ImageNet

data (58.6% vs 65.0% accuracy2). Nevertheless, stronger CNN architectures such as

VGG-M and VGG-VD can approach and outperform PLACES even if trained on

ImageNet data (65.0% vs 62.5%/67.6%).

However, when it comes to using the filter banks with FV-CNN, conclusions are

very different. First, FV-CNN outperforms FC-CNN in all cases, with substantial

gains up to ∼ 11 − 12% in correspondence of a domain transfer from ImageNet to

MIT Indoor. The gap between FC-CNN and FV-CNN is the highest for VGG-VD

models (67.6% vs 81.0%, nearly 14% difference), a trend also exhibited by other

datasets as seen in Table 5.4. Second, the advantage of using domain-specific CNNs

disappears. In fact, the same CAFFE model that is 6.4% worse than PLACES with

2Zhou et al., 2014 report 68.3% for PLACES applied to MIT Indoor, a small difference explained
by implementation details such as the fact that, for all the methods, we do not perform data
augmentation by jittering.
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Accuracy (%)
CNN FC-CNN FV-CNN FC+FV-CNN

PLACES 65.0 67.6 73.1
AlexNet 58.6 69.7 71.6
VGG-M 62.5 74.2 74.4

VGG-VD 67.6 81.0 80.3

Table 5.5: Comparing late and early transfer on the MIT indoor dataset.
We compare PLACES network, trained on MIT Places dataset (similar domain),
with a network with the same architecture (AlexNet), trained on a generic domain.
We also show results for the late (FC-CNN) and early (FV-CNN) transfer for VGG-
M and VGG-VD networks

FC-CNN, is actually 2.1% better when used in FV-CNN. The conclusion is that

FV-CNN appears to be immune, or at least substantially less sensitive, to domain

shifts.

Our explanation of this phenomenon is that the convolutional features are sub-

stantially less committed to a specific dataset than the fully connected layers. Hence,

by using those, FV-CNN tends to be a lot more general than FC-CNN. A second

explanation is that PLACES CNN may learn filters that tend to capture the overall

spatial structure of the image, whereas CNNs trained on ImageNet tend to focus on

localised attributes which may work well with orderless pooling.

Finally, we compare FV-CNN to alternative CNN pooling techniques in the

literature. The closest method is the one of Gong et al., 2014, which uses a similar

underlying CNN to extract local image descriptors and VLAD instead of FV for

pooling. Notably, however, FV-CNN our results on MIT Indoor, for both VGG-M

and VGG-VD are markedly better (68.8% vs 74.2% / 81.0% resp.) and marginally

better (69.7% – Table 5.4 and 5.5) when the same AlexNet CNN is used. Also,

when using VLAD instead FV for pooling the convolutional layer descriptors, the

performance of our method is still better (68.8% vs 71.2%), as seen in Table 5.3. The

key difference is that FV-CNN pools convolutional features, whereas Gong et al.,

2014 pools fully connected descriptors extracted from square image patches. Thus,
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even without spatial information as used by Gong et al., 2014, FV-CNN is not only

substantially faster – 8.5× speedup when using the same network and three scales,

but at least as accurate.

Conclusions. Throughout this set of experiments, we are evaluating on MIT In-

doors dataset; when pretraining the CNN on MIT Places, which is also a scene

understanding dataset, we see an advantage in the case of the late transfer, but this

is reduced by early transfer, and even outperformed, surprisingly, when we transfer

from a generic domain (ImageNet). Using a better trained network (such as VGG-

M) or a deeper architecture (such as VGG-VD) increases the gap even further.



Chapter 6

Semantic Segmentation

In the previous chapter we considered the problem of recognizing textures given the

image regions that contain them. In this chapter, we explore instead the problem of

automatically recognizing as well as segmenting such textured regions in the image.

6.1 Experimental Setup

Motivated by our previous work [Cimpoi et al., 2014], in which we successfully ported

object description methods to texture descriptors, here we propose a segmentation

technique inspired by object detection. An increasingly popular method for object

detection, followed for example by FC-CNN [Girshick et al., 2014], is to first propose

a number of candidate object regions using low-level image cues, and then verifying a

shortlist of such regions using a powerful classifier. Applied to textures, this requires

a low-level mechanism to generate textured region proposals, followed by a region

classifier. A key advantage of this approach is that it allows applying object- (FC-

CNN) and texture-like (FV-CNN) descriptors alike. After proposal classification,

each pixel can be assigned more than one label; this is solved with a simple voting

schemes, also inspired by object detections methods.

In this thesis, we explore two such region generation methods: the crisp regions
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of Isola et al., 2014 and the Multi-scale Combinatorial Grouping (MCG) of Arbeláez

et al., 2014. In both cases, region proposals are generated using low-level image cues,

such as colour or texture consistency, as specified by the original methods. It would

of course be possible to incorporate FC-CNN and FV-CNN among these energy

terms to potentially strengthen the region generation mechanism itself. However,

this partially contradicts the logic of the scheme, which breaks down the problem

into cheaply generating tentative segmentations and then verifying them using a

more powerful (and likely expensive) model. Furthermore, and more importantly,

these cues focus on separating texture instances, as presented in each particular

image, whereas FC-CNN and FV-CNN are meant to identify a texture class. It is

reasonable to expect instance-specific cues (say the colour of a painted wall) to be

better for segmentation.

The crisp region method generates a single partition of the image; hence, indi-

vidual pixels are labelled by transferring the label of the corresponding region, as

determined by the learned predictor. By contrast, MCG generates many thousands

overlapping region proposals in an image and requires a mechanism to resolve po-

tentially ambiguous pixel labelling. This is done using the following simple scheme.

For each proposed region, its label is set to the the highest scoring class based on

the multi-class SVM, and its score to the corresponding class score divided by the

region area. Proposals are then sorted by increasing score and “pasted” to the image

sequentially. This has the effect of considering larger regions before smaller ones and

more confident regions after less confident ones, for regions of the same area.

6.2 Analysis
Results are reported in Table 6.1. Two datasets are evaluated: OS for material

recognition and MSRC for things & stuff. Compared to OS+R, classifying crisp

regions results in a drop of about 10% per-pixel classification accuracy for all de-
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brick cardboard carpet_rug ceramic concrete fabric_cloth food glass

granite_marble hair other laminate leather metal painted paper_tissue

plastic_clear plastic_opaque stone tile wallpaper wood

(a) (b) (c) (d) (e) (f)

Figure 6.1: OS material recognition results. Example test image with material
recognition and segmentation on the OS dataset. (a) original image. (b) ground
truth segmentations from the OpenSurfaces repository (note that not all pixels are
annotated). (c) FC-CNN and crisp-region proposals segmentation results. (d) in-
correctly predicted pixels (restricted to the ones annotated). (e-f) the same, but for
FV-CNN.
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road cat dog body boat

(a) (b) (c) (d) (e) (f)

Figure 6.2: MSRC object segmentation results. (a) image, (b) ground-truth,
(c-d) FC-CNN segmentation and errors, (d-e) FV-CNN segmentation and errors.
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meas. VGG-M VGG-VD
dataset (%) FC FV FV+FC FC FV FC+FV SoA

OS pp 36.0 48.6 (46.9) 49.8 38.5 55.5 (55.7) 55.9 –
OSA msrc 42.8 66.0 63.4 42.1 67.9 64.6 –
MSRC msrc 56.1 82.3 75.2 57.7 86.9 81.5 86.5∗

Table 6.1: Segmentation and recognition using crisp region proposals of materials
(OS) and things & stuff (MSRC). Per-pixel accuracies are reported, using the MSRC
variant (see text) for the MSRC dataset. Results using MCG proposals of Arbeláez
et al., 2014 are reported in brackets for FV-CNN. ∗ obtained by Ladicky et al., 2010.

scriptors. As this dataset is fairly challenging with best achievable performance is

55.4%, this is a satisfactory result. At the same time, it shows that there is ample

space for future improvements. In MSRC, the best accuracy is 87.0%, just a hair

above the best published result 86.5% of Ladicky et al., 2010. Remarkably, these

algorithms do not use any dataset-specific training, nor CRF-regularised semantic

inference: they simply greedily classify regions as obtained from a general-purpose

segmentation algorithms. Qualitative segmentation results (sampled at random) are

given in Figure 6.1 and 6.2.

Results using FV-CNN shown in Table 6.1 in brackets (due to the requirement

of computing CNN features from scratch for every region, it was impractical to use

FC-CNN with MCG proposals). The results are comparable to those using crisp

regions, resulting in 55.7% accuracy on the OS dataset. Other schemes such as non-

maximum suppression of overlapping regions that are quite successful for object

segmentation [Hariharan et al., 2014] performed rather poorly in this case. This is

probably because, unlike objects, texture information is fairly localised and highly

irregularly shaped in an image.

While for recognizing textures, materials or objects covering the entire image,

FC-CNN and FV-CNN were similar in performance, the latter consisting in evalu-

ating few layers less, the advantage of FV-CNN becomes obvious for segmentation

tasks, as FC-CNN requires recomputing the features for every region proposal.



Chapter 7

Applications of Describable

Texture Attributes

This chapter explores two applications of the DTD attributes: using them as a

general-purpose texture descriptors (Section 7.1) for material recognition tasks, and

as a tool for search and visualisation in specialized catalogues of fabrics or wallpapers

(Section7.2).

7.1 Describable Attribute as Generic Texture De-

scriptors

In this section we evaluate using the 47 describable attributes from Section 3.1 as a

general-purpose texture descriptor. The first step in this construction is to learn a

multi-class predictor for the 47 attributes; this predictor is trained on DTD using a

texture representation of choice and a multi-class linear SVM as before. The second

step is to evaluate the multi-class predictor to obtain a 47-dimensional descriptors

(of class scores) for each image in a target dataset. In this manner, one obtains

a novel and very compact representation which is then used to learn a multi-class

non-linear SVM classifier, for example for material recognition.
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DTD Classifier KTH-T2b FMD
Method Linear RBF Linear RBF

FV-SIFT 64.74±2.36 67.75±2.89 49.24±1.73 52.53±1.26

FV-CNN 67.39±3.75 67.66±3.30 62.81±1.33 64.69±1.41

FV-CNN-VD 74.59±2.45 74.71±1.96 70.81±1.39 73.09±1.35

FV-SIFT + FC-CNN 73.98±1.24 74.53±1.14 64.20±1.65 67.13±1.95

FV-SIFT + FC-CNN-VD 74.52±2.31 77.14±1.36 69.21±1.77 72.17±1.66

Previous best 76.0 ±2.9 57.7±1.7

Table 7.1: DTD for material recognition. Trained on FV-SIFT and FC-CNN
features from VGG Very Deep 19 Layers net, the DTD attributes are KTH-T2b
and FMD compared to published state of the art results in term of classification
accuracy. See the text for the details on the notation and the methods.

Results are reported in Table 7.1 for material recognition in FMD and KTH-T2b.

There are two important factors in this experiment. The first one is the choice of

the DTD attributes predictor. Here the best texture representations found before

are evaluated: FV-SIFT, FC-CNN, and FV-CNN (using either VGG-M or VGG-VD

local descriptors), as well as their combinations. The second one is the choice of

classifier used to predict a texture material based on the 47-dimensional vector of

describable attributes. This is done using either a linear or RBF SVM.

Using a linear SVM and FV-SIFT to predict the DTD attributes yields promising

results: 64.7% classification accuracy on KTH-T2b and 49.2% on FMD. the latter

outperforms the specialized aLDA model of [Sharan et al., 2013] combining colour,

SIFT and edge-slice features, whose accuracy is 44.6%. Replacing SIFT with CNN

image descriptors (FV-CNN) improves results significantly for FMD (49.2% vs 62.8%

for VGG-M and 70.8% for VGG-VD) as well as KTH-T2b (64.7% vs 67.4% and

74.6% respectively). While these results are not as good as using the best texture

representations directly on these datasets, remarkably the dimensionality of the

DTD descriptors is two orders of magnitude smaller than all the other alternatives.

An advantage of the small dimensionality of the DTD descriptors is that using

an RBF classifier instead of the linear one is relatively cheap. Doing so improves the
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Classifier KTH-T2b FMD
Method Linear RBF Linear RBF

DTD FC-CNN 70.66±1.97 71.16±2.38 61.44±1.43 63.90±1.31

ALOT FC-CNN 70.03±0.29 71.37±2.04 66.73±2.27 69.27±1.60

FC-CNN VD 72.30±1.68 74.24±2.97 69.63±1.58 71.09±1.73

ALOT-FC-CNN-VD 73.79±2.94 74.80±2.69 74.46±1.84 75.53±1.61

DTD + ALOT FC-CNN 72.59±0.87 73.02±2.64 67.37±1.56 69.83±1.66

Table 7.2: Comparison of DTD and ALOT-based mid-level features for material
recognition. The FC-CNN features were used to train 47 and 250 classifiers, respec-
tively.

performance by 1-3% on both FMD and KTH-T2b across experiments. Overall, the

best result of the DTD features on KTH-T2b is 77.1% accuracy, slightly better than

the state-of-the-art accuracy rate of 76.0% [Sulc and Matas, 2014]. On FMD the

DTD features outperform the state-of-the-art by a significant 15% margin: 72.17%

accuracy vs. 57.7% [Qi et al., 2014], or 57.1% [Sharan et al., 2013], using multiple

features.

In Table 7.2, we show a comparison between the mid-level descriptors based on

DTD (47-D) and ALOT (250-D). Similarly to the previous experiment, we computed

the scores obtained on images from FMD and KTH-T2b by classifiers trained on

DTD and ALOT datasets, respectively. It is interesting to note that, despite 5 times

larger, the ALOT descriptor gives similar performance on KTH-T2b. However, there

is an approximately 5% improvement showing consistently on FMD.

The final experiment compares the semantic attributes of Matthews et al., 2013

on the Outex data. Using FV-SIFT and a linear classifier to predict the DTD at-

tributes, performance on the retrieval experiment of Matthews et al., 2013 is 49.82%

mAP which is not competitive with their result obtained using LBPu (63.3%). How-

ever, LBPu was developed specifically on the Outex data, and it may be overfitted

to this case. To verify this, the DTD attributes where trained again using FV on top

of the LBPu local image descriptors; by doing so, using the 47 attributes on Outex
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Figure 7.1: Descriptions of materials from KTH-T2b dataset. These words are the
most frequent top scoring texture attributes (from the list of 47 we proposed), when
classifying the images from the KTH-T2b dataset.

results in an accuracy of 64.5% mAP; at the same time,Table 5.1 shows that LBPu

is not a competitive predictor on DTD. Hence, it is not a limitation of the DTD

attributes, but rather the very good performance of LBPu on Outex that makes the

difference in this case. This is remarkable considering that their retrieval experiment

contains the data used to train their own attributes (target set), while our attributes

are trained on a completely different data source.

7.2 Search and Visualisation

This section includes a short qualitative evaluation of the DTD attributes. Perhaps

their most appealing property is interpretability; to verify that semantics transfers in

a reasonable way across domains, Figure 7.1 shows an excellent semantic correlation

between the ten categories in KTH-T2b and the attributes in DTD. For example,

aluminium foil is found to be wrinkled, while bread is found be bumpy, pitted, porous

and flecked.

As an additional application of our describable texture attributes we compute

them on a large dataset of 10,000 wallpapers and bedding sets from houzz.com.

The 47 attribute classifiers are learned as in Section 5.1.4 using the FV-SIFT rep-

houzz.com
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Figure 7.2: Bedding sets (top two rows) and wallpapers (bottom two rows) with
the top 3 attributes predicted by our classifier and normalized classification score in
brackets.

resentation and them apply them to the 10,000 images to predict the strength of

association of each attribute and image. Classifiers scores are re-calibrated on the

target data and converted to probabilities by examining the extremal statistics of

the scores. Figure 7.2 shows some example attribute predictions, selecting for a

number of attribute an image that would score perfectly (excluding images used for

calibrating the scores), and then including additional top two attribute matches.

The top two matches tend to be very good description of each texture or pattern,

while the third is a good match in about half of the cases.



Chapter 8

Conclusions and Future Work

In this chapter we summarise the achievements of the work presented in this thesis,

and provide directions for future research.

8.1 Achievements

In this thesis we made several contributions to texture and material recognition.

First, we added a new dimension to the problem of recognizing textures, by propos-

ing a rich, human-centric vocabulary of texture attributes. We contributed a bench-

mark dataset representative of this task by collecting a large number of images

“in the wild”, jointly labelled with 47 describable texture attributes. We used this

dataset to study the problem of extracting semantic properties of textures and pat-

terns.

We also proposed for the first time a large scale analysis of material and texture

attribute recognition in clutter. The benchmark for this task was derived from

Open Surfaces, an earlier contribution of the computer graphic community, which

we also augmented with annotations of semantic attributes. By introducing this new

problem of recognizing attributes and materials of textures in the wild and in clutter,

we brought the study of textures closer to real-world, human-centric applications.
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On the technical side, we analysed texture representations in relation to modern

deep neural networks. The main finding is that orderless pooling of convolutional

neural network features is a remarkably good texture descriptor, sufficiently versatile

to double as a scene and object descriptor too, and resulting in the new state-of-

the-art performance in several benchmarks. We conducted a thorough evaluation of

existing methods, comparing them with the novel representation we introduced, of

which we explored in detail the space of parameters and configurations.

With the proposed texture representations we advanced the state-of-the-art for

texture recognition by up to 25% on challenging benchmarks such as Flickr Ma-

terial Dataset. In this dataset, we have halved the gap between the recognition

performance of computer vision systems and humans, from 57.7% vs 92.4% [Sharan

et al., 2014] to 82.4% vs 92.4%. When the exposure of human subjects is limited to

40ms, automatic recognition is of only 2.5% worse than humans (82.4% vs 84.9%).

We have also shown that the new representations, although designed for texture

recognition, generalize well for other problems, like object classification – achieving

results comparable to the current state-of-the-art (Pascal VOC 2007), but without

using data augmentation. On indoor scenes from MIT Indoor dataset, we advanced

the current state-of-the-art by 10% absolute accuracy increase, also showing that,

by using FV-CNN, the advantage of domain-tuned CNNs disappears. Similarly,

for fine-grained categorization tasks, we achieve comparable or better results on

CUB200-2011, without using part or bounding box information.

We also introduced a low-dimensionality mid-level descriptor, which consists

of classifier scores for the 47 attributes. When learned using FV-CNN features

on very deep models, we obtain 13% accuracy improvement on FMD, and a result

approaching closely the state-of-the-art on KTH-T2b. The low dimensionality allows

using to use an RBF kernel on top, which improves the results by a further few

percent.
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8.2 Future Work

There are several directions in which the present work can be extended in the future.

One interesting direction is to explore how recognizing describable attributes could

further benefit from using CNNs, by fine-tuning a pre-trained network combined

with a pooling encoder such as FV, or by training a model specific for texture

attribute recognition. However, the number of samples per category is relatively

small compared to the large number of parameters in deep networks, so that this

would require significantly extending the available texture datasets.

Although we proved through practical applications that using classifiers learnt

on DTD can generate meaningful descriptions of new images, the vocabulary of 47

terms could be further extended, to provide more accurate and detailed descrip-

tors. For example, the extended vocabulary could incorporate material-like terms

(e.g.wood-like, metallic, furry) and terms to better describe surface reflectance prop-

erties, (transparent, shiny) or structure (pebble-like). DTD was collected with the

simplifying assumption that each texture fills the entire image, a limitation that

was removed in Open Surfaces for some of the attributes. An extension would be to

remove these limitations in the future versions of the DTD benchmark. The anno-

tation work could be simplified by providing the output of our method as a starting

point.

We explored the querying catalogues only for a limited domain, namely textiles

and wallpapers, showing that the top predictions for a given new image are meaning-

ful and informative. This could be further extended to a description-based retrieval

benchmark. Inspired by Sivic and Zisserman, 2003, recognizing describable proper-

ties of textures would enable querying image catalogues or videos more specifically,

e.g.retrieving frames containing the character with a chequered shirt, or searching

an online store for a striped shirt. The set of attributes could be further extended
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with (relative) meta-attributes, like density of constituent elements (dense / sparse

stripes or dots) and dimension (larger squares for a chequered pattern).

Understanding textures in detail and in a human-centric manner would be eas-

ily applicable to graphical editing, providing a more intuitive interface to texture

generators, or by allowing to replace a texture with controlled variants of the same,

similarly to Liu et al., 2004 that edits near-regular textures.
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Appendix A

FMD Described

In what follows, we show some more visualizations of the top scoring (three) DTD

attributes, recognised on images from FMD dataset.
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Figure A.1: Example meaningful clusters of FMD categories, obtained using K-
means on DTD classification scores. Showing results for fabric and glass – overlaid,
we list the most frequently identified attributes. On each image, we show the top 3
scoring texture words.
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Figure A.2: Continued from Figure A.1. Displaying results on foliage, paper and
wood.
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Figure A.3: Continued from Figure A.2 Subcategories for stone and water images.
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Describable Textures Dataset

banded

blotchy

braided

bubbly

Figure B.1: The 47 texture words in theDescribable Texture Dataset introduced
in Chapter 3. Each row represents sample images for one attribute category.
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dotted

Figure B.2: Describable Textures Dataset continued from Figure B.1
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fibrous
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gauzy

grid

grooved

Figure B.3: Describable Textures Dataset continued from Figure B.2
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Figure B.4: Describable Textures Dataset continued from Figure B.3
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Figure B.5: Describable Textures Dataset continued from Figure B.4
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Figure B.6: Describable Textures Dataset continued from Figure B.5
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Figure B.7: Describable Textures Dataset continued from Figure B.6
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